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Abstract 
 
It is about four and half decades since Warshall and (later) Floyd had published their 
much cited algorithms for to detect any loops (Warshall, 1959) or to calculete all-pairs 
Shortest Pathes (Floyd, 1962) in a (directed, weighted) graph structure. The basic idea 
being a triviality - that if both P[i,k] and P[k,j] pathes exist, than path P[i,j] also exists - 
gives us possibilities to perform all-pairs analyses to get manyfold information about 
the graph structure on the basis of tracking operative (adjacency) information 
systematically node-by-node (k) along the graph. The article shows that with some 
slight modification within the original „Floyd-Warshall Algorithm” and with some 
complementary terms a lot of information can be gained about the logical (or technical 
or social etc.) structure modelled by the graph that can be of much use for managerial 
decision support in fields of Construction Management too. 
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Introduction 
 
Implying its Computing Science origin the so called Floyd-Warshall algorithm is 
frequently cited as tripartite loop routines organized around a single core of simple 
calculations derived from a proper representation („structure” or „adjacency” matrix) of 
the graph considered. See: Figure 1 and Figure 2. 
 
Figure 1. – Initial graph representation – written in Delphi / Turbo Pascal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

var 
    n : integer;    { number of nodes of the Graph } 
    i,j,k : integer;    { running indices/identifyers of nodes (rows/columns) } 
    D:  array [1..n,1..n] of integer;   { „distance” matrix of the Graph } 
    P:   array [1..n,1..n] of integer;   { labels/pointers for tracking the shortest pathes } 
 
Procedure Initialization; 
    begin 
        for i:=1 to n do  
            for j:=1 to n do  
                begin 
                    D[i,j]:=Wij; 
                    if D[j,j]=M then P[i,j]:=0 else P[i,j]:=i 
                end 
    end; 
 
{ „M” refers to a properly chosen „marker” value indicating „no_connection”. At Floyd M=„+∞” } 
{ „Wij” refers to weights of Graph edges. Wij=M if no edge from i to j } 



 
Figure 2. – Calculating all-pairs (shortest) distances – written in Delphi / Turbo Pascal  
 
 
 
 
 
 
 
 
 
 
Though it is rarely declared (or less evident) main idea of Floyd-Warshall routines is 
based on a simple triviality. Namely: considering a connected directed graph, if a path 
exists from node i to node k and also a path exists from node k to node j, then 
consequently a path do exists from node i to node j (at least the one via node k). In this 
context we do refer node k as a transfer node on a path from node i to node j. 
 
Extending the above triviality it can be stated that in case of any graph there exist path 
from all the nodes from which path leads to a selected transfer node k to all the nodes to 
which path leads from the mentioned node k. It means that testing all the nodes of the 
graph as transfer nodes one by one we can gain certainty of existence of any and all the 
pathes throughout the entire graph. It is also easy to see that tracking nodes this way all 
existing pathes consisting of at least two edges on the graph get be considered once and 
only once. With information about the single edges in the other hand (read in the initial 
structure matrix) we can conclude that all-pairs analyses of the graph can be kept in 
hand this way. The question is what kinds of information can be gained about (better 
said by the aid of) the graph that can be calculated by separable functions, separated 
cycle by cycle at transfer nodes selected respectively. 
 
 
Formulation 
 
For to discuss the question above instead of using any computer syntax we do introduce 
the following denotions: 
 

G[N,E]  : refers to a graph (G) having the set of nodes (N) and the set of edges (E) 
G[N,E,W] : refers to a graph as above but having weights (W) on edges respectively 
ij  : refers to the edge from node i to node j on the graph 
M  : marker value in tabular representation of graph,  reads „no connection” 
W  : initial tabular representation (structure/adjacency matrix) of the graph 
wij  : element of W referring to the „weight” of the edge from node i to node j  
n  : number of nodes of the graph 
k  : index of outer cycle, also refers to transfer node actually selected 
Ak  : transformed matrix representation of the graph in cycle k 
aij

k  : element of Ak referring to ij pair of nodes (connection from i to j) 
ai

k  : row vector i of matrix Ak   
ái

k  : column vector i of matrix Ak   
i,j  : running indices of nodes, also referring to rows and columns of matrices 

 

Procedure Calculating_Distances; 
    begin 
        for k:=1 to n do    { outer loop – stepping „node by node” } 
            for i:=1 to n do     { inner loops – tabular calculations } 
                for j:=1 to n do  
                    if D[i,k]+D[k,j]<D[i,j] then begin { the core – testing „connections” } 
                        D[i,j]:=D[i,k]+D[k,j];  { – modification if needed } 
                        P[i,j]:=P[k,j]   { – labelling if modified } 
                    end 
    end; 



Using denotions above general routines of selecting nodes as transfer nodes one by one 
(outer cycle) and of testing connections (inner cycles) and of performing necessary 
modifications if any (core) can be formulated as shown in Figure 3. 
 
Figure 3. – Formulation of general routines 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Calculations at problems discussed below are differing in selection of M (marker value), 
in initial representation of the garph (W) and in function ϕ(aik

k-1, akj
k-1, aij

k-1) (core). 
Special features are introduced at the individual problems below. 
 
For to evaluate convergence of the algorithms it can be stated that initializations are 
done in n2 steps, while overall matrix transformations (calculating An) need n3 steps. 
However calculations are rarely over when getting any An matrix of the graph. Further 
evaluations of results are usually necessary to gain any useful information just like for 
managerial purposes too. 
 
Problems discussed below can be (are) referred in Operation Research as: 
 

- Connectivity Analysis 
- Finding Loops (Warshall, 1959) 
- Finding Dominant and/or Dominated Sub-Graph 
- All-Pairs Path Counting 
- All-Pairs Shortest Path (Floyd, 1962), Gravity-Points, Center-Points, Diagonals 
- All-Pairs Longest Path, Minimal Potentials, Scheduling (Network Techniques) 

 
 
Connectivity Analysis 
 
By definition a graph is considered to be connected if path exists between all pairs of 
nodes. The interpretation is evident in case of non-directed (symmetric) graphs, but it 
needs some re-interpretation for directed graphs, while weighted or non-weighted 
characteristics of the graph has no importance. As a general definition of connected 
graphs it can be stated that a graph is considered to be connected if on its symmetric 
version (all edges made non-directed or „two-directional”) path exists between all pairs 
of nodes. This way connectivity is considered regardless of directions of edges that is 
regardless of the input or output „side” of the phenomenon modelled by the graph. 

 
A0 = W       { initialization } 
 
Ak = Φ(Ak-1),    k = 1,2,…,n     { outer cycle } 
 
Inner calculations of matrix-transformation function Φ: { inner cycles and core } 
 
 �  ϕ(aik

k-1, akj
k-1, aij

k-1)   |   i≠k   j≠k   aik
k-1≠M   akj

k-1≠M   � 
aij

k =  �        �   ∀  ij 
 �   aij

k-1     otherwise      � 
 
where ϕ(aik

k-1, akj
k-1, aij

k-1) refers to a properly selected trhee-variable function (core) 



 
According to later definition using denotions introduced above initinal definition of 
structure matrix can be formulated as: 
 
     �    1   |   ij ∈  E  or  ji ∈  E     � 
  M = 0  wij  =  �    �   ∀  ij 
     �    M     otherwise  � 
 
Core funcion to be used is a simple constant function: 
 

ϕ(aik
k-1, akj

k-1, aij
k-1) = 1 

 
During calculations (in cycles of matrix transformations) practically we do complete 
path-existance information registered in Ak matrices with newer discoveries revealing 
gradually during testing nodes one by one as transfer nodes. 1 values in cells of final An 
matrix do indicate existence of any path between the pairs of nodes respectively. 
 
In case of a connected graph all elements of An matrix equal to 1.         ( aij

n = 1   ∀  ij ) 
 
In case of a not connected graph nodes of individual connected sub-graphs can be 
identified by considering row vectors of An. Node i and node j belong to the same 
connected sub-graph if  ai

n = aj
n. The graph contains as many (connected) sub-graphs as 

many different ai
n row vectors are in matrix An. 

 
Connectivity Analysis can promote identifying problem fields that can be managed in 
no relation with others (individually) when modelling processes of complex production 
systems. It also can help to check reason-result mechanisms and to set boundaries and 
interfaces when developing controlling-monitoring scenarios. We may say in general 
Connectivity Analysis can be of use in case of looking for components more or less 
tightly related (or absolutely not related) in logical structures represented by graphs. 
 
 
Finding Loops 
 
The problem of finding loops (cycles) on graph structures is quite similar to the problem 
of connectivity analysis with the main difference that it can be characteristic problem of 
directed (not symmetric) graphs. The aim of calculations is to find nodes of the graph if 
any connected (via chain of edges through other nodes) to themselves.  
 
We do keep directions of edges so definition of structure matrix can be formulated as: 
 
     �    1   |   ij ∈  E      � 
  M = 0  wij  =  �   �   ∀  ij 
     �    M     otherwise � 
 
Core funcion can be either the same constant function used at Connectivity Analysis: 
 

ϕ(aik
k-1, akj

k-1, aij
k-1) = 1 ( Compare with Warshall ! ) 

 



Nodes connected to themselves if any are identified by  aii
n≠M values in the diagonal of 

matrix An indicating that „path” (better said „chain of edges”) exist from given nodes to 
the same ones. We do refer these nodes as „loop-nodes” or „nodes-on-loop”. 
 
For to indentify edges of any loop (we refer them as „loop-edges” or „edges-on-loop”) 
we have to consider the initial (A0) matrix and the last one (An) together. Edges (aij

0=1) 
on loop can be identified by testing three necessary conditions: 1., originating point of 
the edge is a loop-node (aii

n≠M);  2., ending point of the edge is a loop-node (ajj
n≠M);  

3., path exists between the two nodes connected by the edge in reverse too (aji
n≠M). 

 
Though warning on existence of loop(s) on the graph even more identification of loop-
nodes and loop-edges are of great help many times, knowing them is rarely enough. We 
may consider an accidentally false mistyping at entering precedence restrictions of a 
CPM network resulting in huge bulk of nodes and edges got be on loop. We would 
badly welcome some compass for finding data to be checked or rethought. 
 
A slight help can be gained by assigning weights (eij) to loop-edges on the basis of 
estimated number of loops they are contributing in having the recognition that edges  
originating from the same node or ending in the same node are surely not components 
of the same loop. For to promote it we may isolate loop-edges in matrix An+1 using the 
algorithm below. 
 
   �    1    |    aij

0=1   aii
n≠M   ajj

n≠M   aji
n≠M   � 

  aij
n+1 = �      �   ∀  ij 

   �    0     otherwise    � 
 
For weighting loop-edges (aij

n+1=1) we can state that number of loops (eij) an edge can 
contribute in is surely not less than number of loop-edges ending in its originating node 
(Σj aji

n+1 ) times number of loop-edges originating from its ending node (Σi aji
n+1 ). 

 
eij ≥ (Σj aji

n+1 )⋅(Σi aji
n+1 ) 

 
Having all loop-edges weighted we can focus our attention either to the environment of 
loop-edges of the higher weight-values. 
 
Here we remark that information set in the initial A0 matrix (edges of the graph) can be 
transmitted to matrix An by changing the previously used constant function in the core 
to a kind of binary one. 
 

ϕ(aik
k-1, akj

k-1, aij
k-1) = max{aij

k-1, 2-aij
k-1} 

 
Using this later function aij

n=1 values in matrix An represent edges of the graph while 
aij

n=2 values are indicating that between the two nodes referred there exists connection 
via pathes consisting of at least two edges. This way we do not need to refer back to the 
initial A0 matrix when isolating loop-edges (that is we do not have to keep it in the 
memory of the computer – in case of extensive graphs) hence aij

0=1 values can be read 
in matrix An (aij

n=1) too. 
 



Finding and eliminating loops (inconsistent restrictions) is typical problem at Network-
techniques Aided Scheduling e.g. PERT, CPM, MPM, PDM, etc. where precedence 
restrictions are set in form of a directed graph. 
 
 
Dominant/Dominated Sub-Graph 
 
Problem of dominant and/or dominated sub-graph(s) has close relations with problems 
of loops. For initial representation of the graph (W) and for preparing matrix An we may 
use the same algorithms (with constant function in the core) used at Finding Loops. The 
difference is in reading the results. 
 
By definition: Node i of a graph is considered as „dominant node” if path exists from it 
to all other nodes of the graph. (Σjaij

n - aii
n = n-1)       

 
Similarly: Node j is considered as „dominated node” if path exists to it from all other 
nodes of the graph. (Σiaij

n – ajj
n = n-1)   

 
Using terms of dominant/dominated (Do substitute the proper term!) nodes and sub-
graphs some trivialities can be stated either as theorems: 
 

- A directed graph may have at most one dominant/dominated sub-graph. The 
dominant/dominated sub-graph as a corporate unit acts like source/sink 
(origin/termin) in the direction of the rest of the graph. 

- Nodes and edges of a dominant/dominated sub-graph consisting of more than one 
nodes are surely loop-nodes and loop-edges forming one single connected loop-
system. 

- There is no relation between existence of a dominant and that of a dominated sub-
graph. A directed graph may have dominant sub-graph but no dominated one, and 
reverse. 

 
Problem of dominant/dominated components may get high significance at evaluating 
working (technical and/or social) environments or dynamic systems. It can be explained 
briefly saying (e.g.): „If a dominant component goes wrong in a system then all other 
components will surely go wrong”. Similarly: „If any component goes wrong in the 
system then all dominated components will surely go wrong”. Similar way the most 
motivating group of a society (or of a company’s staff) can be identified just like the 
least motivated or passive one of no any workable initiation („Staff-Mapping”). 
 
 
All-Pairs Path Counting 
 
In case of directed garphs with no any loop we may earn information not only about 
existence of any path but about number of different pathes between any pair of nodes 
using a slightly modified algorithm described below. For to define initial representation 
of the graph (W) we may use the same routine described above at Finding Loops while 
for to prepare matrix An we use the core function of: 
 

ϕ(aik
k-1, akj

k-1, aij
k-1) = aij

k-1 + aik
k-1⋅ akj

k-1  
 



(Existence of any loop – that is any aii
n≠M value in diagonal of matrix An – invalidates 

the results.) 
 
Elements of resulting An matrix are the numbers of different pathes (differing in at least 
one node and in at least two edges) between respected pairs of nodes. The more interest 
it may earn anyhow is not the information collected in matrix An but is the information 
can be read by the aid of it. Based on aij

n values of matrix An a single weight (rst
ij) or a 

whole matrix (Rij) reading the number of different pathes an edge (ij) is incorporated in 
between the nodes referred (s,t) can be calculated. 
 
  �    1    |       s = i      t = j     � 
  rst

ij  = �    ajt
n    |       s = i      t ≠ j   �     ∀  st     s∈ N    t∈ N    ij∈ E     

   �    asi
n  |       s ≠ i      t = j   � 

  �    asi
n⋅ ajt

n             otherwise � 
 
Similar way, a single weight (rij

st) or whole matrix (Rst) reading the number of different 
pathes the edges referred (ij) are inconporated in between a selected pair of nodes (s,t) 
can be calculated. 
 
  �    1    |       i = s      j = t     � 
  rij

st  = �    ajt
n    |       i = s      j ≠ t   �     ∀  ij     ij∈ E    s∈ N    t∈ N     

   �    asi
n  |       i ≠ s      j = t   � 

  �    asi
n⋅ ajt

n             otherwise � 
 
Number of pathes (ri) a node (i) is incorporated in on the graph can be calculated via 
sums of values in column i (Σj aji

n ) and in row i (Σj aij
n ) of matrix An. 

 
ri = max{Σj aji

n , Σj aij
n , (Σj aji

n )⋅(Σj aij
n )}  ∀  i      

 
Values of this kind related to components (to nodes and/or to edges) of the graph can 
quantify effect-range of them as numbers of pathes (better said: „of effect-chains”) they 
are effected by and/or effecting on around the graph. Considering results of above 
calculations we may drive our attention to most effective (of highest weights) or to least 
effective (inessential/avoidable) components of the dynamic system modelled by the 
graph – depending on our actual interests. 
 
 
All-Pairs Shortest Path 
 
Having all pathes discovered by testing nodes as transfer nodes the possibility for to 
select one or more specific ones such as all-pairs shortest pathes (on a weighted graph, 
having no any negative loop) is also given. At initial representation of the graph we do 
keep the weights of edges while for marker value we do choose „positive infinity”. 
 
      �    wij   |    ij ∈  E      � 
  M = +∞  wij  =  �   �   ∀  ij 
      �    M     otherwise � 
 



Core function to be used at preparing matrix An reading the lengths of all-pairs shortest 
pathes („distance matrix”) is: 
 

ϕ(aik
k-1, akj

k-1, aij
k-1) = min{aij

k-1, aik
k-1+akj

k-1}  ( Compare with Floyd ! ) 
 
Elements of resulting An matrix are lengths of the shortest pathes (distances) between 
respected pairs of nodes. (Existence of any negative loop – that is any aii

n<0 value in the 
diagonal of matrix An – invalidates the results.) 
 
Considering A0 and An matrices together path(es) of length read in respecting cell of 
matrix An between any two nodes can be pursued. An edge (sk) is the first or the only 
edge of a path of given length (ast

n) between two nodes (s and t) if the length (weight) of 
the edge (ask

0) and the length of the rest of the path (without that edge) (akt
n) adds the 

length of the path (ast
n) considered. 

 
ast

n = ask
0 + akt

n  or  ast
n = ast

0   
 
Starting from originating node of the path to direction of the terminal one edges of the 
path can be identified one-by-one on a „forward-pass”. This way length of pathes and of 
edges are used as some kind of „labels”. ( Compare with labelling at Floyd! ) 
 
Distance information read in matrix An may earn interest in logistics, in designing basic 
version (basic architecture) of „vario” products, in developing market policies etc.. 
 
Gravity-point of a weighted graph is the node where the sum of shortest pathes „to” 
(input side) or the sum of shortest pathes „from” (output side) other nodes of the graph 
is the minimum. Questions to be answered may sound like:  
 
„Where to locate a Crop-Store to have the overall transportation cost (or time) be the 
minimum?” (input side) 

j = ?          Σi aij
n – ajj

n  min 
 
„Where to locate the Dealers’ Central Store to have the overall transportation cost (or 
time) be the minimum?” (output side) 
 

i = ?          Σj aij
n – aii

n  min 
 
Center-point of a weighted graph is the node where the longest of the shortest pathes 
„to” (input side) or „from” (output side) other nodes of the graph is the minimum. 
Question to be answered may sound like:  
 
„Where to locate Emergency Center (Fire Department or Ambulance) to reach even the 
furthest lot the center is responsible for in the shortest time?” (input and/or output side) 
 

j = ?  maxi aij
n  min  and/or   i = ?  maxj aij

n  min 
 
Diagonal of the graph – by definition – is the longest of the (all-pairs) shortest pathes 
around the graph. Its length (D) can be read in matrix An directly. 
 

D = maxij aij
n   



 
In its special way the Diagonal quantifies spread or integrity of the system modelled. It 
may function as a „measure” of transfer/response capability of dynamic systems like 
communication and/or alarm systems, „neural networks”, etc.. 
 
 
All-Pairs Longest Path 
  
Algorithms for to calculate An matrix reading all-pairs longest pathes are differing from 
routines used for calculating all-pairs shortest pathes in „sign” only: 
 
      �    wij   |    ij ∈  E      � 
  M = –∞   wij  =  �   �   ∀  ij 
      �    M     otherwise � 
 

ϕ(aik
k-1, akj

k-1, aij
k-1) = max{aij

k-1, aik
k-1+akj

k-1}  
 
This case positive loops are to be excluded from the graph. (Existence of any positive 
loop – that is any aii

n>0 value in the diagonal of matrix An – invalidates the results.) 
 
Considering A0 and An matrices together path(es) of length read in respecting cell of 
matrix An between any two nodes can be also pursued the same way it has been done at 
all-pairs shortest pathes. 
 
Benefits of having lengths of all-pairs longest pathes known can be highly appreciated 
at scheduling problems where precedence restrictions of components are set in form of a 
directed weighted graph. „Overall execution time” (Π) of the project modelled and 
„deadlines” (time-potentials) such as „earliest times” (πj) and „latest times” (π’i) of 
„events” (represented by nodes of the graph) can be read in matrix An almost directly. 
 

Π = maxij aij
n 

 
πj = max{0, maxi aij

n}      ∀  j 
 
π’i = min{Π, minj(Π-aij

n)}    ∀  i 
 
Nodes of the overall longest path (better said: of „Dominant Sub-Graph”) known as 
„Critical Path” can be recognized by checking condition if the earliest and latest times 
equal to each other (πi=π’i), while edges (between critical nodes) of it can be recognized 
by checking if difference of time potentials at ending (πj) and at originating (πi) nodes 
of the edge equals to the weight (wij) of it. 
 

πi = π’i               πj = π’j             πj – πi = wij            ij ∈  E 
 
All-Pairs Longest Path algorithm may aid scheduling problems with no expressed 
starting (origin) and/or no ending (termin) point („open networks”) and with upper and 
lower bounds either among precedence conditions or among durations. Approaching 
scheduling problems this way it is the dual of „Minimal Potentials” problem being 



exposed while much of restrictions on structures of weighted graphs usually set at 
Scheduling Network Problems (PERT, CPM, MPM/PDM, etc.) can be released. 
 
 
Research Background 
 
The need for overviewing all-pairs connections in a logical structure had been generated 
by an R&D joint project within frames of cooperation of Hungarian Railways Company 
(MÁV) and of Budapest University of Technology and Management (BME), 1989-93, 
aiming developement of a Computer Aided Decision Support System for planning and 
managing reconstructional works and maintenance of hungarian railways’ system. 
 
Challenge of management problem was the „Permanent Scheduling” of works on a 3-
years slipping time-span looking over thousands of jobs with accuracy of minutes. No 
expressed start, no expressed end, widely diversed responsibilities, dispersed locations 
across the country, but one complex „must-be-operating” (under traffic) railway system 
and a restricted common pool of some significant specialized resource series. 
 
Traditional Scheduling techniques (including traditional Network Techniques) prooved 
to be insufficient. „The project to be scheduled was not a project.” A bunch of results of 
research cooperation was the development of a software system named „FITT” based 
on a network-like modular scheduling technique some elements of which have been 
discussed as „GTM” (General Time Model) in curricula of elective subjects of 
Department of Construction Technology and Management (ÉKT) of BME since 
nineties of last Century. … 
 
Members of R&D group were: 
 

- Tibor Vígh, MÁV KBPI 
- Károly Bacher+, BME ÉKT 
- Dr. József Monori+, BME ÉKT 
- Dr. László Neszmélyi, BME ÉKT 
- Zoltán A.Vattai, BME ÉKT 
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APPENDIX I. – GLOSSARY 
 
Adjacency Matrix - tabular representation of a graph having values in cells reading 
existences of edges. (See also: Structure Matrix)  
CPM – Critical Path Method (J. Kelley 1957) 
Diagonal of a squared matrix – set of cells with first and second index the same 
Directed Edge – an edge having relation between the nodes related interpreted in one 
direction only. Usual graphical representation of a directed edge is an arrow from the 
„preceding” node (at tail) to the „succeding” one (at head). Remark: Any non-directed 
edge can be substituted by a pair of directed edges with opposing directions. In this 
context a non-directed edge works like a loop (See: Loop) 
Directed Graph – a graph having all edges directed (See remark at Directed edge) 
Edge – related pair of nodes 
Graph – structured set (graphics) of nodes (vertices/circles) and edges (arcs/arrows) 
Length of a path/loop – sum of weights of edges of the path/loop 
Loop – self-closing flow (string/chain) of directed edges. (Inaccurately it is frequently 
explained as „self-closing path”) 
MPM – Metra Motentials’ Method (B. Roy 1960) 
Negative Loop – a loop having negative length 
Path – connected flow (string/chain) of directed edges. Any path is identified by list of 
nodes it incorporates sequentially. In a path’s „list of nodes” no repretition is allowed. 
PDM – Precedence Diagramming Method (IBM 1972) 
PERT – Program Evaluation and Review Technique (USA, Polaris, 1958) 
Positive Loop – a loop having positive length 
Squared Matrix – a matrix having the number of rows and of columns the same 
Structure Matrix – tabular representation of a graph where cells are representing edges 
having the interpretation of „where from (row) - where to (column)”. Cells of it are 
usually referred by indices (first index referring to row, second index referring to 
column). Values in cells are „weigths” of edges respectively and/or some marking value 
reading „no edge between the nodes referred in direction referred”. 
Symmetric Graph – a graph the structure matrix of which is symmetric („non-directed 
graph”). 
Weight – quantitative characteristic („parameter”) assigned to edge 
Weighted Graph – a graph having weights assigned to all edges 
 


