
FLOYD-WARSHALL AGAIN

Ph.D. Zoltán A.Vattai
Budapest University of Technology and Economics, Faculty of Architecture

zvattai@ekt.bme.hu

Abstract

It is about four and half decades since Warshall and (later) Floyd had published their
much cited algorithms for to detect any loops (Warshall, 1959) or to calculete all-pairs
Shortest Pathes (Floyd, 1962) in a (directed, weighted) graph structure. The basic idea
being a triviality - that if both P[i,k] and P[k,j] pathes exist, than path P[i,j] also exists -
gives us possibilities to perform all-pairs analyses to get manyfold information about
the graph structure on the basis of tracking operative (adjacency) information
systematically node-by-node (k) along the graph. The article shows that with some
slight modification within the original „Floyd-Warshall Algorithm” and with some
complementary terms a lot of information can be gained about the logical (or technical
or social etc.) structure modelled by the graph that can be of much use for managerial
decision support in fields of Construction Management too.

Keywords: operations research, graphs, computer applications

Introduction

Implying its Computing Science origin the so called Floyd-Warshall algorithm is
frequently cited as tripartite loop routines organized around a single core of simple
calculations derived from a proper representation („structure” or „adjacency” matrix) of
the graph considered. See: Figure 1 and Figure 2.

Figure 1. – Initial graph representation – written in Delphi / Turbo Pascal

var
 n : integer; { number of nodes of the Graph }
 i,j,k : integer; { running indices/identifyers of nodes (rows/columns) }
 D: array [1..n,1..n] of integer; { „distance” matrix of the Graph }
 P: array [1..n,1..n] of integer; { labels/pointers for tracking the shortest pathes }

Procedure Initialization;
 begin
 for i:=1 to n do
 for j:=1 to n do
 begin
 D[i,j]:=Wij;
 if D[j,j]=M then P[i,j]:=0 else P[i,j]:=i
 end
 end;

{ „M” refers to a properly chosen „marker” value indicating „no_connection”. At Floyd M=„+∞” }
{ „Wij” refers to weights of Graph edges. Wij=M if no edge from i to j }

Figure 2. – Calculating all-pairs (shortest) distances – written in Delphi / Turbo Pascal

Though it is rarely declared (or less evident) main idea of Floyd-Warshall routines is
based on a simple triviality. Namely: considering a connected directed graph, if a path
exists from node i to node k and also a path exists from node k to node j, then
consequently a path do exists from node i to node j (at least the one via node k). In this
context we do refer node k as a transfer node on a path from node i to node j.

Extending the above triviality it can be stated that in case of any graph there exist path
from all the nodes from which path leads to a selected transfer node k to all the nodes to
which path leads from the mentioned node k. It means that testing all the nodes of the
graph as transfer nodes one by one we can gain certainty of existence of any and all the
pathes throughout the entire graph. It is also easy to see that tracking nodes this way all
existing pathes consisting of at least two edges on the graph get be considered once and
only once. With information about the single edges in the other hand (read in the initial
structure matrix) we can conclude that all-pairs analyses of the graph can be kept in
hand this way. The question is what kinds of information can be gained about (better
said by the aid of) the graph that can be calculated by separable functions, separated
cycle by cycle at transfer nodes selected respectively.

Formulation

For to discuss the question above instead of using any computer syntax we do introduce
the following denotions:

G[N,E] : refers to a graph (G) having the set of nodes (N) and the set of edges (E)
G[N,E,W] : refers to a graph as above but having weights (W) on edges respectively
ij : refers to the edge from node i to node j on the graph
M : marker value in tabular representation of graph, reads „no connection”
W : initial tabular representation (structure/adjacency matrix) of the graph
wij : element of W referring to the „weight” of the edge from node i to node j
n : number of nodes of the graph
k : index of outer cycle, also refers to transfer node actually selected
Ak : transformed matrix representation of the graph in cycle k
aij

k : element of Ak referring to ij pair of nodes (connection from i to j)
ai

k : row vector i of matrix Ak
ái

k : column vector i of matrix Ak
i,j : running indices of nodes, also referring to rows and columns of matrices

Procedure Calculating_Distances;
 begin
 for k:=1 to n do { outer loop – stepping „node by node” }
 for i:=1 to n do { inner loops – tabular calculations }
 for j:=1 to n do
 if D[i,k]+D[k,j]<D[i,j] then begin { the core – testing „connections” }
 D[i,j]:=D[i,k]+D[k,j]; { – modification if needed }
 P[i,j]:=P[k,j] { – labelling if modified }
 end
 end;

Using denotions above general routines of selecting nodes as transfer nodes one by one
(outer cycle) and of testing connections (inner cycles) and of performing necessary
modifications if any (core) can be formulated as shown in Figure 3.

Figure 3. – Formulation of general routines

Calculations at problems discussed below are differing in selection of M (marker value),
in initial representation of the garph (W) and in function ϕ(aik

k-1, akj
k-1, aij

k-1) (core).
Special features are introduced at the individual problems below.

For to evaluate convergence of the algorithms it can be stated that initializations are
done in n2 steps, while overall matrix transformations (calculating An) need n3 steps.
However calculations are rarely over when getting any An matrix of the graph. Further
evaluations of results are usually necessary to gain any useful information just like for
managerial purposes too.

Problems discussed below can be (are) referred in Operation Research as:

- Connectivity Analysis
- Finding Loops (Warshall, 1959)
- Finding Dominant and/or Dominated Sub-Graph
- All-Pairs Path Counting
- All-Pairs Shortest Path (Floyd, 1962), Gravity-Points, Center-Points, Diagonals
- All-Pairs Longest Path, Minimal Potentials, Scheduling (Network Techniques)

Connectivity Analysis

By definition a graph is considered to be connected if path exists between all pairs of
nodes. The interpretation is evident in case of non-directed (symmetric) graphs, but it
needs some re-interpretation for directed graphs, while weighted or non-weighted
characteristics of the graph has no importance. As a general definition of connected
graphs it can be stated that a graph is considered to be connected if on its symmetric
version (all edges made non-directed or „two-directional”) path exists between all pairs
of nodes. This way connectivity is considered regardless of directions of edges that is
regardless of the input or output „side” of the phenomenon modelled by the graph.

A0 = W { initialization }

Ak = Φ(Ak-1), k = 1,2,…,n { outer cycle }

Inner calculations of matrix-transformation function Φ: { inner cycles and core }

 � ϕ(aik

k-1, akj
k-1, aij

k-1) | i≠k j≠k aik
k-1≠M akj

k-1≠M �
aij

k = � � ∀ ij
 � aij

k-1 otherwise �

where ϕ(aik

k-1, akj
k-1, aij

k-1) refers to a properly selected trhee-variable function (core)

According to later definition using denotions introduced above initinal definition of
structure matrix can be formulated as:

 � 1 | ij ∈ E or ji ∈ E �
 M = 0 wij = � � ∀ ij
 � M otherwise �

Core funcion to be used is a simple constant function:

ϕ(aik
k-1, akj

k-1, aij
k-1) = 1

During calculations (in cycles of matrix transformations) practically we do complete
path-existance information registered in Ak matrices with newer discoveries revealing
gradually during testing nodes one by one as transfer nodes. 1 values in cells of final An
matrix do indicate existence of any path between the pairs of nodes respectively.

In case of a connected graph all elements of An matrix equal to 1. (aij

n = 1 ∀ ij)

In case of a not connected graph nodes of individual connected sub-graphs can be
identified by considering row vectors of An. Node i and node j belong to the same
connected sub-graph if ai

n = aj
n. The graph contains as many (connected) sub-graphs as

many different ai
n row vectors are in matrix An.

Connectivity Analysis can promote identifying problem fields that can be managed in
no relation with others (individually) when modelling processes of complex production
systems. It also can help to check reason-result mechanisms and to set boundaries and
interfaces when developing controlling-monitoring scenarios. We may say in general
Connectivity Analysis can be of use in case of looking for components more or less
tightly related (or absolutely not related) in logical structures represented by graphs.

Finding Loops

The problem of finding loops (cycles) on graph structures is quite similar to the problem
of connectivity analysis with the main difference that it can be characteristic problem of
directed (not symmetric) graphs. The aim of calculations is to find nodes of the graph if
any connected (via chain of edges through other nodes) to themselves.

We do keep directions of edges so definition of structure matrix can be formulated as:

 � 1 | ij ∈ E �
 M = 0 wij = � � ∀ ij
 � M otherwise �

Core funcion can be either the same constant function used at Connectivity Analysis:

ϕ(aik
k-1, akj

k-1, aij
k-1) = 1 (Compare with Warshall !)

Nodes connected to themselves if any are identified by aii
n≠M values in the diagonal of

matrix An indicating that „path” (better said „chain of edges”) exist from given nodes to
the same ones. We do refer these nodes as „loop-nodes” or „nodes-on-loop”.

For to indentify edges of any loop (we refer them as „loop-edges” or „edges-on-loop”)
we have to consider the initial (A0) matrix and the last one (An) together. Edges (aij

0=1)
on loop can be identified by testing three necessary conditions: 1., originating point of
the edge is a loop-node (aii

n≠M); 2., ending point of the edge is a loop-node (ajj
n≠M);

3., path exists between the two nodes connected by the edge in reverse too (aji
n≠M).

Though warning on existence of loop(s) on the graph even more identification of loop-
nodes and loop-edges are of great help many times, knowing them is rarely enough. We
may consider an accidentally false mistyping at entering precedence restrictions of a
CPM network resulting in huge bulk of nodes and edges got be on loop. We would
badly welcome some compass for finding data to be checked or rethought.

A slight help can be gained by assigning weights (eij) to loop-edges on the basis of
estimated number of loops they are contributing in having the recognition that edges
originating from the same node or ending in the same node are surely not components
of the same loop. For to promote it we may isolate loop-edges in matrix An+1 using the
algorithm below.

 � 1 | aij

0=1 aii
n≠M ajj

n≠M aji
n≠M �

 aij
n+1 = � � ∀ ij

 � 0 otherwise �

For weighting loop-edges (aij

n+1=1) we can state that number of loops (eij) an edge can
contribute in is surely not less than number of loop-edges ending in its originating node
(Σj aji

n+1) times number of loop-edges originating from its ending node (Σi aji
n+1).

eij ≥ (Σj aji

n+1)⋅(Σi aji
n+1)

Having all loop-edges weighted we can focus our attention either to the environment of
loop-edges of the higher weight-values.

Here we remark that information set in the initial A0 matrix (edges of the graph) can be
transmitted to matrix An by changing the previously used constant function in the core
to a kind of binary one.

ϕ(aik
k-1, akj

k-1, aij
k-1) = max{aij

k-1, 2-aij
k-1}

Using this later function aij

n=1 values in matrix An represent edges of the graph while
aij

n=2 values are indicating that between the two nodes referred there exists connection
via pathes consisting of at least two edges. This way we do not need to refer back to the
initial A0 matrix when isolating loop-edges (that is we do not have to keep it in the
memory of the computer – in case of extensive graphs) hence aij

0=1 values can be read
in matrix An (aij

n=1) too.

Finding and eliminating loops (inconsistent restrictions) is typical problem at Network-
techniques Aided Scheduling e.g. PERT, CPM, MPM, PDM, etc. where precedence
restrictions are set in form of a directed graph.

Dominant/Dominated Sub-Graph

Problem of dominant and/or dominated sub-graph(s) has close relations with problems
of loops. For initial representation of the graph (W) and for preparing matrix An we may
use the same algorithms (with constant function in the core) used at Finding Loops. The
difference is in reading the results.

By definition: Node i of a graph is considered as „dominant node” if path exists from it
to all other nodes of the graph. (Σjaij

n - aii
n = n-1)

Similarly: Node j is considered as „dominated node” if path exists to it from all other
nodes of the graph. (Σiaij

n – ajj
n = n-1)

Using terms of dominant/dominated (Do substitute the proper term!) nodes and sub-
graphs some trivialities can be stated either as theorems:

- A directed graph may have at most one dominant/dominated sub-graph. The
dominant/dominated sub-graph as a corporate unit acts like source/sink
(origin/termin) in the direction of the rest of the graph.

- Nodes and edges of a dominant/dominated sub-graph consisting of more than one
nodes are surely loop-nodes and loop-edges forming one single connected loop-
system.

- There is no relation between existence of a dominant and that of a dominated sub-
graph. A directed graph may have dominant sub-graph but no dominated one, and
reverse.

Problem of dominant/dominated components may get high significance at evaluating
working (technical and/or social) environments or dynamic systems. It can be explained
briefly saying (e.g.): „If a dominant component goes wrong in a system then all other
components will surely go wrong”. Similarly: „If any component goes wrong in the
system then all dominated components will surely go wrong”. Similar way the most
motivating group of a society (or of a company’s staff) can be identified just like the
least motivated or passive one of no any workable initiation („Staff-Mapping”).

All-Pairs Path Counting

In case of directed garphs with no any loop we may earn information not only about
existence of any path but about number of different pathes between any pair of nodes
using a slightly modified algorithm described below. For to define initial representation
of the graph (W) we may use the same routine described above at Finding Loops while
for to prepare matrix An we use the core function of:

ϕ(aik
k-1, akj

k-1, aij
k-1) = aij

k-1 + aik
k-1⋅ akj

k-1

(Existence of any loop – that is any aii
n≠M value in diagonal of matrix An – invalidates

the results.)

Elements of resulting An matrix are the numbers of different pathes (differing in at least
one node and in at least two edges) between respected pairs of nodes. The more interest
it may earn anyhow is not the information collected in matrix An but is the information
can be read by the aid of it. Based on aij

n values of matrix An a single weight (rst
ij) or a

whole matrix (Rij) reading the number of different pathes an edge (ij) is incorporated in
between the nodes referred (s,t) can be calculated.

 � 1 | s = i t = j �
 rst

ij = � ajt
n | s = i t ≠ j � ∀ st s∈ N t∈ N ij∈ E

 � asi
n | s ≠ i t = j �

 � asi
n⋅ ajt

n otherwise �

Similar way, a single weight (rij

st) or whole matrix (Rst) reading the number of different
pathes the edges referred (ij) are inconporated in between a selected pair of nodes (s,t)
can be calculated.

 � 1 | i = s j = t �
 rij

st = � ajt
n | i = s j ≠ t � ∀ ij ij∈ E s∈ N t∈ N

 � asi
n | i ≠ s j = t �

 � asi
n⋅ ajt

n otherwise �

Number of pathes (ri) a node (i) is incorporated in on the graph can be calculated via
sums of values in column i (Σj aji

n) and in row i (Σj aij
n) of matrix An.

ri = max{Σj aji

n , Σj aij
n , (Σj aji

n)⋅(Σj aij
n)} ∀ i

Values of this kind related to components (to nodes and/or to edges) of the graph can
quantify effect-range of them as numbers of pathes (better said: „of effect-chains”) they
are effected by and/or effecting on around the graph. Considering results of above
calculations we may drive our attention to most effective (of highest weights) or to least
effective (inessential/avoidable) components of the dynamic system modelled by the
graph – depending on our actual interests.

All-Pairs Shortest Path

Having all pathes discovered by testing nodes as transfer nodes the possibility for to
select one or more specific ones such as all-pairs shortest pathes (on a weighted graph,
having no any negative loop) is also given. At initial representation of the graph we do
keep the weights of edges while for marker value we do choose „positive infinity”.

 � wij | ij ∈ E �
 M = +∞ wij = � � ∀ ij
 � M otherwise �

Core function to be used at preparing matrix An reading the lengths of all-pairs shortest
pathes („distance matrix”) is:

ϕ(aik
k-1, akj

k-1, aij
k-1) = min{aij

k-1, aik
k-1+akj

k-1} (Compare with Floyd !)

Elements of resulting An matrix are lengths of the shortest pathes (distances) between
respected pairs of nodes. (Existence of any negative loop – that is any aii

n<0 value in the
diagonal of matrix An – invalidates the results.)

Considering A0 and An matrices together path(es) of length read in respecting cell of
matrix An between any two nodes can be pursued. An edge (sk) is the first or the only
edge of a path of given length (ast

n) between two nodes (s and t) if the length (weight) of
the edge (ask

0) and the length of the rest of the path (without that edge) (akt
n) adds the

length of the path (ast
n) considered.

ast

n = ask
0 + akt

n or ast
n = ast

0

Starting from originating node of the path to direction of the terminal one edges of the
path can be identified one-by-one on a „forward-pass”. This way length of pathes and of
edges are used as some kind of „labels”. (Compare with labelling at Floyd!)

Distance information read in matrix An may earn interest in logistics, in designing basic
version (basic architecture) of „vario” products, in developing market policies etc..

Gravity-point of a weighted graph is the node where the sum of shortest pathes „to”
(input side) or the sum of shortest pathes „from” (output side) other nodes of the graph
is the minimum. Questions to be answered may sound like:

„Where to locate a Crop-Store to have the overall transportation cost (or time) be the
minimum?” (input side)

j = ? Σi aij
n – ajj

n min

„Where to locate the Dealers’ Central Store to have the overall transportation cost (or
time) be the minimum?” (output side)

i = ? Σj aij
n – aii

n min

Center-point of a weighted graph is the node where the longest of the shortest pathes
„to” (input side) or „from” (output side) other nodes of the graph is the minimum.
Question to be answered may sound like:

„Where to locate Emergency Center (Fire Department or Ambulance) to reach even the
furthest lot the center is responsible for in the shortest time?” (input and/or output side)

j = ? maxi aij
n min and/or i = ? maxj aij

n min

Diagonal of the graph – by definition – is the longest of the (all-pairs) shortest pathes
around the graph. Its length (D) can be read in matrix An directly.

D = maxij aij
n

In its special way the Diagonal quantifies spread or integrity of the system modelled. It
may function as a „measure” of transfer/response capability of dynamic systems like
communication and/or alarm systems, „neural networks”, etc..

All-Pairs Longest Path

Algorithms for to calculate An matrix reading all-pairs longest pathes are differing from
routines used for calculating all-pairs shortest pathes in „sign” only:

 � wij | ij ∈ E �
 M = –∞ wij = � � ∀ ij
 � M otherwise �

ϕ(aik
k-1, akj

k-1, aij
k-1) = max{aij

k-1, aik
k-1+akj

k-1}

This case positive loops are to be excluded from the graph. (Existence of any positive
loop – that is any aii

n>0 value in the diagonal of matrix An – invalidates the results.)

Considering A0 and An matrices together path(es) of length read in respecting cell of
matrix An between any two nodes can be also pursued the same way it has been done at
all-pairs shortest pathes.

Benefits of having lengths of all-pairs longest pathes known can be highly appreciated
at scheduling problems where precedence restrictions of components are set in form of a
directed weighted graph. „Overall execution time” (Π) of the project modelled and
„deadlines” (time-potentials) such as „earliest times” (πj) and „latest times” (π’i) of
„events” (represented by nodes of the graph) can be read in matrix An almost directly.

Π = maxij aij
n

πj = max{0, maxi aij

n} ∀ j

π’i = min{Π, minj(Π-aij

n)} ∀ i

Nodes of the overall longest path (better said: of „Dominant Sub-Graph”) known as
„Critical Path” can be recognized by checking condition if the earliest and latest times
equal to each other (πi=π’i), while edges (between critical nodes) of it can be recognized
by checking if difference of time potentials at ending (πj) and at originating (πi) nodes
of the edge equals to the weight (wij) of it.

πi = π’i πj = π’j πj – πi = wij ij ∈ E

All-Pairs Longest Path algorithm may aid scheduling problems with no expressed
starting (origin) and/or no ending (termin) point („open networks”) and with upper and
lower bounds either among precedence conditions or among durations. Approaching
scheduling problems this way it is the dual of „Minimal Potentials” problem being

exposed while much of restrictions on structures of weighted graphs usually set at
Scheduling Network Problems (PERT, CPM, MPM/PDM, etc.) can be released.

Research Background

The need for overviewing all-pairs connections in a logical structure had been generated
by an R&D joint project within frames of cooperation of Hungarian Railways Company
(MÁV) and of Budapest University of Technology and Management (BME), 1989-93,
aiming developement of a Computer Aided Decision Support System for planning and
managing reconstructional works and maintenance of hungarian railways’ system.

Challenge of management problem was the „Permanent Scheduling” of works on a 3-
years slipping time-span looking over thousands of jobs with accuracy of minutes. No
expressed start, no expressed end, widely diversed responsibilities, dispersed locations
across the country, but one complex „must-be-operating” (under traffic) railway system
and a restricted common pool of some significant specialized resource series.

Traditional Scheduling techniques (including traditional Network Techniques) prooved
to be insufficient. „The project to be scheduled was not a project.” A bunch of results of
research cooperation was the development of a software system named „FITT” based
on a network-like modular scheduling technique some elements of which have been
discussed as „GTM” (General Time Model) in curricula of elective subjects of
Department of Construction Technology and Management (ÉKT) of BME since
nineties of last Century. …

Members of R&D group were:

- Tibor Vígh, MÁV KBPI
- Károly Bacher+, BME ÉKT
- Dr. József Monori+, BME ÉKT
- Dr. László Neszmélyi, BME ÉKT
- Zoltán A.Vattai, BME ÉKT

References

1. Frank S. Budnick, Dennis McLeavy, Richard Mojena, Principles of Operations

Research for Management, IRWIN Homewood, Illinois, 1988
2. Robert W. Floyd, Algorithm 97: Shortest Path, Communications of the ACM 5(6):

345, June 1962
3. Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operation Research,

Holden Day Inc., 1986
4. James E. Kelley Jr., Morgan R. Walker, Critical-path Planning and Scheduling,

Proceedings of Eastern Joint Computer Conference, p. 160-173, Boston MA,
December 1959

5. Joseph J. Moder, Cecil R. Phillips, Edward W. Davis, Project Management with
CPM, PERT and Precedence Diagramming, Van Nostrand Reinhold, New York,
1983

6. Albert D. Polimeni, H. Joseph Straight, Foundations of finite mathematics,
Brooks/Cole Publishing Company, Monterey, California, 1985

7. B. Roy, Les problémes d’ ordonnancement, Dunod, Paris, 1964
8. B. Roy and B. Sussmann, Les problémes d’ ordonnancement avec contraintes

disjonctives, Note DS no 9. bis, SEMA, Montrouge, 1964
9. Dr. Z. A. Vattai, FITT - Vágányzárban végzett időkorlátos technológiák tervezése,

Építéstechnológia - építési menedzsment konferencia, Számítástechnika:
tudományos és gyakorlati alkalmazások az építőiparban szekció, Szabadka, 1997

10. S. Warshall, A Theorem on Boolean Matrices, Journal of the ACM, Vol 9, 1, 11-12,
1962

11. Gary E. Whitehouse, System Analysis and Design Using Network techniques,
Prentice-Hall Inc., Englewood Cliffs, New Yersey, 1973

APPENDIX I. – GLOSSARY

Adjacency Matrix - tabular representation of a graph having values in cells reading
existences of edges. (See also: Structure Matrix)
CPM – Critical Path Method (J. Kelley 1957)
Diagonal of a squared matrix – set of cells with first and second index the same
Directed Edge – an edge having relation between the nodes related interpreted in one
direction only. Usual graphical representation of a directed edge is an arrow from the
„preceding” node (at tail) to the „succeding” one (at head). Remark: Any non-directed
edge can be substituted by a pair of directed edges with opposing directions. In this
context a non-directed edge works like a loop (See: Loop)
Directed Graph – a graph having all edges directed (See remark at Directed edge)
Edge – related pair of nodes
Graph – structured set (graphics) of nodes (vertices/circles) and edges (arcs/arrows)
Length of a path/loop – sum of weights of edges of the path/loop
Loop – self-closing flow (string/chain) of directed edges. (Inaccurately it is frequently
explained as „self-closing path”)
MPM – Metra Motentials’ Method (B. Roy 1960)
Negative Loop – a loop having negative length
Path – connected flow (string/chain) of directed edges. Any path is identified by list of
nodes it incorporates sequentially. In a path’s „list of nodes” no repretition is allowed.
PDM – Precedence Diagramming Method (IBM 1972)
PERT – Program Evaluation and Review Technique (USA, Polaris, 1958)
Positive Loop – a loop having positive length
Squared Matrix – a matrix having the number of rows and of columns the same
Structure Matrix – tabular representation of a graph where cells are representing edges
having the interpretation of „where from (row) - where to (column)”. Cells of it are
usually referred by indices (first index referring to row, second index referring to
column). Values in cells are „weigths” of edges respectively and/or some marking value
reading „no edge between the nodes referred in direction referred”.
Symmetric Graph – a graph the structure matrix of which is symmetric („non-directed
graph”).
Weight – quantitative characteristic („parameter”) assigned to edge
Weighted Graph – a graph having weights assigned to all edges

