

BUTE DCTM / Engineering Programs in English / 2000-

The F¹/₂ verlap¹/₂ C^{max} Problem

Sequencing on parallel machines "Flow-Shop Problem"

ID: Graham, Lenstra, Rinnooy Kan, 1979

Assumptions:

- Each work (activity) should be performed on each piece (project) in a preset technological order – "flow-shop"
- Each machine (group) performs its only single (specialized) work (activity) on each building
- Each work (activity) is performed by its only (specialized) machine (group)
- Sequence of pieces (projects) must be the same for each machine (group) "no passing allowed"
- Each machine (group) should work with no break "pre-emption not allowed"
- Overlapping performance in time on a piece (project) allowed "ovelapping allowed"
- The aim is to minimize the overall complition time "complition time to be minimized"

A Decision Tree for Sequencing

123 < 132 < 213 < 231 < 312 < 321

Constant and varying segments of the OVERALL EXECUTION TIME

Calculating succession times

Theoretical effect of Sequence

THE SEARCH (implicite enumeration)

Evaluating solution

Evaluating results

Optimal sequences and schedules ...

Distribution of results

One of the most unfavorables

Analysing some restrictions

No passing ...

No idle-times ...

No missing processes ...

The F2//C^{max} Problem

Algorithm (Johnson 1954)

Constructing the schedule from both ends, considering production time values (t_i) in ascending sequence, do order the pieces as listed below :

- 1. If ",t" value consedered appeared on the first machine $(t_i=t_1)$ do order the piece to the beginning of the schedule (after the already scheduled ones) !
- 2. If ",t" value considered appeared on the second machine $(t_i=t_2)$ do order the piece to the end of the schedule (before the already scheduled ones) !
- 3. If ",t" value considered appeared both on the first and on the second machine ($t_i=t_1=t_2$) you are free to chose either {1.} or {2.} !

BUTE DCTM / Engineering Programs in English / 2000-

The F2/overlap/C^{max} Problem

Algorithm (modified Johnson-algorithm / Vattai 1993)

Constructing the schedule from both ends, considering minimum succession time values (cr) in ascending sequence, do order the pieces as listed below :

- 1. If "cr" value consedered appeared at start of the piece ("V" shaped progression) do order the piece to the beginning of the schedule (after the already scheduled ones) !
- 2. If ,,cr" value considered appeared at finish of the piece (,,A" shaped progression) do order the piece to the end of the schedule (before the already scheduled ones) !
- 3. If ,,cr" value considered appeared both at start and at finish of the piece (,,parallel" progression) you are free to chose either {1.} or {2.} !

BUTE DCTM / Engineering Programs in English / 2000-

F2//C^{max} **Þ** F2/overlap/C^{max}

Conclusion :

Defining ,,cr" values for each piece as $[cr = min\{t_1,t_2\}]$ (,,consecutive-" to ,,overlapped processing") any problem that can be solved by Johnson's algorithm can be solved by modified Johnson-algorithm too.

BUTE DCTM / Engineering Programs in English / 2000-

Proofing optimality of schedules constructed by modified Johnson-algorithm

- **Theorem :** There exists at least one optimal schedule that is quasi o-shaped
- **Proof :** Let assume we found an optimal schedule that is not quasi o-shaped. Make it quasi o-shaped ! ...

After transforming an optimal schedule that had not been quasi oshaped into a quasi o-shaped one completion time (C^{max}) did not increase.

Conclusion : Originating from any (optimal) schedule that is not quasi o-shaped we can construct an other (optimal) schedule that is quasi o-shaped.

Proofing optimality of schedules constructed by modified Johnson-algorithm

Definition : Let *g* indicate the last piece with V-shaped progression $(S_g < F_g)$ in a quasi o-shaped schedule. Also let *h* indicate the first piece with A-shaped progression $(S_h > F_h)$ in the same quasi o-shaped schedule. (*By definition of quasi o-shaped schedule g* < *h*.) A schedule is "strictly o-shaped" if

 $\mathbf{S}_i > \mathbf{S}_j \mid i < j \mathbf{f} g$ and $\mathbf{F}_k < \mathbf{F}_l \mid h \mathbf{f} k < l$

Theorem : There exists at least one optimal schedule that is strictly o-shaped

Proof : Let assume we found a quasi o-shaped optimal schedule that is not strictly o-shaped. Make it strictly o-shaped ! ...

After transforming a quasi o-shaped optimal schedule that had not been strictly o-shaped into a strictly o-shaped one completion time (C^{max}) did not increase. (Use the same logic for any other cases)

Conclusion : Originating from any quasi o-shaped (optimal) schedule that is not strictly o-shaped we can construct an other (optimal) schedule that is strictly o-shaped.

Proofing optimality of schedules constructed by modified Johnson-algorithm

Theorem : If a schedule is strictly o-shaped than it is surely optimal too.

