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S C H E D U L I N G
Sequencing Projects

( Multi-Project Management )
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The   FoverlapCmax   Problem

Sequencing on parallel machines
„Flow-Shop Problem”

ID: Graham, Lenstra, Rinnooy Kan, 1979

Assumptions:

- Each work (activity) should be performed on
each piece (project) in a preset technological
order – „flow-shop”

- Each machine (group) performs its only single
(specialized) work (activity) on each building

- Each work (activity) is performed by its only
(specialized) machine (group)

- Sequence of pieces (projects) must be the same
for each machine (group) – „no passing allowed”

- Each machine (group) should work with no
break – „pre-emption not allowed”

- Overlapping performance in time on a piece
(project) allowed – „ovelapping allowed”

- The aim is to minimize the overall complition
time – „complition time to be minimized”
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A Decision Tree for Sequencing
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Calculating succession times

Overlapping allowed
technological break preset

With no overlapping
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Forming a Master Schedule

  δ  δi+1,j = max{ 0 ; Fi,j – Si+1,j }

      δ      δi,j = max{ 0 ; Si+1,j – Fi,j }
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SETTING THE FILTER VALUE
( Estimating the optimum )
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Assuming the last/first project unreleased :

Assuming no inner coincidences :

FILTER:
Estimated OPTIMUM:
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Evaluating solution

„Enumeration”

π(m) = m! + Σ
i=1

m-1
m!
i!

„Effectivity”

ν = 100 ⋅
π(m) - πS

π(m)

„Exposition”

µ = 100 ⋅
τavr - τmin

τavr

„Gap”

ε = 100 ⋅
τmax - τmin

τmin
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Evaluating results

Optimal sequences and schedules …

One of the most
unfavorables

Distribution of
results
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Analysing some restrictions

No passing …

No idle-times …

No missing processes …
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The  F2//Cmax  Problem

Algorithm ( Johnson 1954 )

Constructing the schedule from both ends, considering
production time values (ti) in ascending sequence, do order the
pieces as listed below :

1. If „ti” value consedered appeared on the first machine (ti=t1)
do order the piece to the beginning of the schedule ( after the
already scheduled ones ) !

2. If „ti” value considered appeared on the second machine
(ti=t2) do order the piece to the end of the schedule ( before
the already scheduled ones ) !

3. If „ti” value considered appeared both on the first and on the
second machine (ti=t1=t2) you are free to chose either {1.} or
{2.} !
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The  F2/overlap/Cmax  Problem

Algorithm ( modified Johnson-algorithm / Vattai 1993 )

Constructing the schedule from both ends, considering
minimum succession time values (cr) in ascending sequence,
do order the pieces as listed below :

1. If „cr” value consedered appeared at start of the piece ( „V”
shaped progression ) do order the piece to the beginning of
the schedule ( after the already scheduled ones ) !

2. If „cr” value considered appeared at finish of the piece ( „A”
shaped progression ) do order the piece to the end of the
schedule ( before the already scheduled ones ) !

3. If „cr” value considered appeared both at start and at finish
of the piece ( „parallel” progression ) you are free to chose
either {1.} or {2.} !
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F2//Cmax   ⇒⇒  F2/overlap/Cmax

Conclusion :

Defining „cr” values for each piece as   [  cr = min{t1,t2}  ]
(„consecutive-” to „overlapped processing”) any problem
that can be solved by Johnson’s algorithm can be solved by
modified Johnson-algorithm too.
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Proofing optimality of schedules
constructed by

modified Johnson-algorithm

Definition : A schedule is callad „quasi o-shaped” if
Fi ≤ Si     and     Fj ≥ Sj       |     i < j

( „V-shaped” progression at start, „A-shaped” progression at end )

Theorem : There exists at least one optimal schedule that is quasi
o-shaped

Proof : Let assume we found an optimal schedule that is not quasi
o-shaped. Make it quasi o-shaped ! …

We find: Dsucc’ = Fi = Sj < Fj = Dsucc

Dpred’ = Sj + δj = Sj + Si - Fj < Si = Dpred

After transforming an optimal schedule that had not been quasi o-
shaped into a quasi o-shaped one completion time (Cmax) did not
increase.

Conclusion : Originating from any (optimal) schedule that is
not quasi o-shaped we can construct an other
(optimal) schedule that is quasi o-shaped.
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Proofing optimality of schedules
constructed by

modified Johnson-algorithm
Definition : Let g indicate the last piece with V-shaped

progression (Sg<Fg) in a quasi o-shaped schedule. Also let h
indicate the first piece with A-shaped progression (Sh>Fh) in the
same quasi o-shaped schedule. ( By definition of quasi o-shaped
schedule  g<h .) A schedule is „strictly o-shaped” if

Si > Sj    |   i < j ≤  g           and        Fk < Fl    |   h ≤  k < l

Theorem : There exists at least one optimal schedule that is
strictly o-shaped

Proof : Let assume we found a quasi o-shaped optimal schedule
that is not strictly o-shaped. Make it strictly o-shaped ! …

We find (e.g.):  Dsucc’ = Fi +δi’ = Fi + Fj - Si < Fj = Dsucc

  Dpred’ = Sj = Fi + δi = Fi + Sj - Fi ≤ Si + Sj - Fi = Dpred

After transforming a quasi o-shaped optimal schedule that had not
been strictly o-shaped into a strictly o-shaped one completion time
(Cmax) did not increase. ( Use the same logic for any other cases )

Conclusion : Originating from any quasi o-shaped (optimal)
schedule that is not strictly o-shaped we can
construct an other (optimal) schedule that is
strictly o-shaped.
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Proofing optimality of schedules
constructed by

modified Johnson-algorithm

Theorem : If a schedule is strictly o-shaped than it is surely
optimal too.

Proof :

Cmax = T1 + T2 =  T1’ + T2’

T1 = Σ ti,1 = const       and       T1’ = Σ ti,2 = const

Cmax = min       T2 = min   and   T2’ = min

See definition of strictly o-shaped schedule …

Recognition : Using Johson’s algorithm or modified Johnson-
algorithm we make a strictly o-shaped schedule.

Remark : The condition if any of „pre-emption allowed”
( machines need not work with no break ) is
irrelevant at  F2//Cmax  and  F2/overlap/Cmax

problems.
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