SCHEDULING Sequencing Projects (Multi-Project Management)

A

The $F \mid$ overlap $\mid C^{\text {max }}$ Problem

Sequencing on parallel machines „Flow-Shop Problem"

ID: Graham, Lenstra, Rinnooy Kan, 1979

Assumptions:

- Each work (activity) should be performed on each piece (project) in a preset technological order - „flow-shop"
- Each machine (group) performs its only single (specialized) work (activity) on each building
- Each work (activity) is performed by its only (specialized) machine (group)
- Sequence of pieces (projects) must be the same for each machine (group) - „no passing allowed"
- Each machine (group) should work with no break - , pre-emption not allowed"
- Overlapping performance in time on a piece (project) allowed - „ovelapping allowed"
- The aim is to minimize the overall complition time - „complition time to be minimized"

A Decision Tree for Sequencing

$123<132<213<231<312<321$

Constant and varying segments of the OVERALL EXECUTION TIME

$$
\begin{gathered}
\mathbf{T}=\mathbf{t}_{1}+\mathbf{t}_{2} \\
\mathbf{T}=\mathbf{t}_{1}^{\prime}{ }^{\prime}+\mathbf{t}_{\mathbf{2}} \\
\mathbf{t}_{1}=\mathbf{c o n s t} \\
\mathbf{t}_{1}^{\prime}=\mathbf{c o n s t} \\
\mathbf{T}_{\min } \Rightarrow \mathbf{t}_{\mathbf{2} \min } \\
\mathbf{T}_{\min } \Rightarrow \mathbf{t}_{\mathbf{2}}{ }^{\prime} \text { min }
\end{gathered}
$$

Calculating succession times

Overlapping allowed
 technological break preset

With no overlapping

Forming a Master Schedule

A

(i+1)
 $\mathrm{S}_{\mathrm{i}+1, \mathrm{j}}$

I

$$
\uparrow
$$

$$
\delta_{i, j}=\max \left\{0 ; S_{i+1, j}-F_{i, j}\right\}
$$

B (i)

Theoretical effect of Sequence

$$
D_{a} \gg D_{b}, C R
$$

$$
\begin{gathered}
\frac{T^{\prime}}{T^{\prime \prime}}=\frac{t_{1}^{\prime}+t_{2}{ }^{\prime}}{t_{1}{ }^{\prime \prime}+t_{2}^{\prime \prime}} \approx \frac{m \cdot D_{a}+(n-1) \cdot D_{a}}{m \cdot D_{a}+m \cdot n \cdot D_{a}}=\frac{(m+n-1) \cdot D_{a}}{m \cdot(n+1) \cdot D_{a}}=\frac{m+n-1}{m \cdot(n+1)} \\
\lim _{m \rightarrow \infty} \frac{T^{\prime}}{T^{\prime \prime}} \approx \lim _{m \rightarrow \infty} \frac{m+n-1}{m \cdot(n+1)}=\lim _{m \rightarrow \infty} \frac{m}{m \cdot(n+1)}+\lim _{m \rightarrow \infty} \frac{n}{m \cdot(n+1)}-\lim _{m \rightarrow \infty} \frac{1}{m \cdot(n+1)}=\frac{1}{n+1}+0-0 \\
\lim _{n \rightarrow \infty} \frac{T^{\prime}}{T^{\prime \prime}} \approx \lim _{n \rightarrow \infty} \frac{m+n-1}{m \cdot(n+1)}=\lim _{n \rightarrow \infty} \frac{m}{m \cdot(n+1)}+\lim _{n \rightarrow \infty} \frac{n}{m \cdot(n+1)}-\lim _{n \rightarrow \infty} \frac{1}{m \cdot(n+1)}=0+\frac{1}{m}-0 \\
\lim _{\substack{m \rightarrow \infty \\
n \rightarrow \infty}} \frac{T^{\prime}}{T^{\prime \prime}} \approx \underset{\substack{m \rightarrow \infty \\
n \rightarrow \infty}}{\lim _{n \rightarrow \infty} \frac{m+n-1}{m \cdot(n+1)}=\lim _{\substack{m \rightarrow \infty \\
n \rightarrow \infty}} \frac{m}{m \cdot(n+1)}+\lim _{\substack{m \rightarrow \infty \\
n \rightarrow \infty}} \frac{n}{m \cdot(n+1)}-\lim _{\substack{m \rightarrow \infty \\
n \rightarrow \infty}} \frac{1}{m \cdot(n+1)}=0+0-0}
\end{gathered}
$$

SETTING THE FILTER VALUE (Estimating the optimum)

a bld
A

i	1	2	3
	2	1	2
	1	2	1
2	2	2	1
	1	2	2
3	1	1	2
	2	1	1
4	1	2	1
	2	2	1
5	2	2	1
	2	1	3

A

Assuming the last/first project unreleased :

$\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d}$

j	1	2	3
	1	1	1
	1	$\leftarrow \mathrm{~F}_{\mathrm{f}, \mathrm{j}}$	
	1	1	2

Assuming no inner coincidences :

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{3}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{D}_{\mathrm{i}, 1}+\sum_{\mathrm{j}=1}^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{f}, \mathrm{j}} \\
& \mathbf{E}_{\mathbf{4}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{D}_{\mathrm{i}, \mathrm{n}}+\sum_{\mathrm{j}=1}^{\mathrm{n}-1} \mathrm{~S}_{\mathrm{f}, \mathrm{j}}
\end{aligned}
$$

Estimated OPTIMUM:
$\mathrm{E}=\max \left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}\right\}$

FILTER:

$$
\tau=\mathrm{E}-\sum_{\mathrm{i}=1} \mathrm{D}_{\mathrm{i}, 1}
$$

$$
\begin{aligned}
& \mathbf{E}_{1}=\sum_{i=1}^{m} D_{i, 1}+\min _{i}\left\{\begin{array}{c}
n=1 \\
j=1 \\
j=1, j \\
F_{i j}
\end{array}\right\} \\
& \mathbf{E}_{2}=\sum_{i=1}^{m} D_{i, n}+\min _{i}\left\{\sum_{j=1}^{n-1} S_{i j}\right\}
\end{aligned}
$$

THE SEARCH (implicite enumeration)

Evaluating solution

„Enumeration"

$$
\pi(\mathrm{m})=\mathrm{m}!+\sum_{\mathrm{i}=1}^{\mathrm{m}-1} \frac{\mathrm{~m}!}{\mathrm{i}!}
$$

"Effectivity"

$$
\mathrm{V}=100 \cdot \frac{\pi(\mathrm{~m})-\pi_{\mathrm{S}}}{\pi(\mathrm{~m})}
$$

„Exposition"

$$
\mu=100 \cdot \frac{\tau^{\mathrm{avr}}-\tau^{\mathrm{min}}}{\tau^{\mathrm{avr}}}
$$

„Gap"

$$
\mathcal{E}=100 \cdot \frac{\tau^{\max }-\tau^{\min }}{\tau^{\min }}
$$

Evaluating results

Optimal sequences and schedules

D

D

Distribution of results

One of the most unfavorables

Analysing some restrictions

No passing

No idle-times

No missing processes

Calculating a single permutation

	i	S(i)	j								
			$\mathrm{b}_{\text {S(i), }}$	$\mathrm{a}_{\mathrm{i}, \mathrm{j}}$	$\mathrm{c}_{\mathrm{i}, \mathrm{j}}$	$\mathrm{b}_{\text {S(i), }}$	$\mathrm{a}_{\mathrm{i}, \mathrm{j}}$	$\mathrm{c}_{\mathrm{i}, \mathrm{j}}$	$\mathrm{b}_{\text {S(i), }}$	$\mathrm{a}_{\mathrm{i}, \mathrm{j}}$	$\mathrm{c}_{\mathrm{i}, \mathrm{j}}$
			$\mathrm{k}_{\text {S(i), }}$			$\mathrm{k}_{\mathrm{S(i),j}}$			$\mathrm{k}_{\text {S(i), }}$		
\mathbf{A}^{\wedge}	1	1	2	0	0	1	0	0	2	0	0
			1			2			1		
B	2	2	2	1	1	2	0	0	1	0	0
			1			2			2		
E	3	5	2	1	2	2	0	0	1	-1	-1
			2			1			3		
D	4	4	1	-1	1	2	1	1	1	-2	-3
			2			2			1		
C	5	3	1	-1	0	1	-1	0	2	1	-2
			2			1			1		
					2			1			0

The F2//C ${ }^{\text {max }}$ Problem

Algorithm (Johnson 1954)

Constructing the schedule from both ends, considering production time values (t_{i}) in ascending sequence, do order the pieces as listed below :

1. If ,, t_{i} " value consedered appeared on the first machine ($\mathrm{t}_{\mathrm{i}}=\mathrm{t}_{1}$) do order the piece to the beginning of the schedule (after the already scheduled ones)!
2. If „t," value considered appeared on the second machine $\left(\mathrm{t}_{\mathrm{i}}=\mathrm{t}_{2}\right)$ do order the piece to the end of the schedule (before the already scheduled ones)!
3. If ,"ti" value considered appeared both on the first and on the second machine $\left(\mathrm{t}_{\mathrm{i}}=\mathrm{t}_{1}=\mathrm{t}_{2}\right)$ you are free to chose either $\{1$.$\} or$ \{2.\}!

	t_{1}	t_{2}
\mathbf{A}	8	7
\mathbf{B}	6	6
\mathbf{C}	5	1
\mathbf{D}	1	2
\mathbf{E}	5	2
\mathbf{F}	3	5
\mathbf{G}	3	2
\mathbf{H}	3	8
\mathbf{I}	8	2
\mathbf{J}	7	4
\mathbf{K}	2	6
\mathbf{L}	4	1

The F2/overlap/C ${ }^{\text {max }}$ Problem

Algorithm (modified Johnson-algorithm / Vattai 1993)

Constructing the schedule from both ends, considering minimum succession time values (cr) in ascending sequence, do order the pieces as listed below :

1. If „cr" value consedered appeared at start of the piece („V" shaped progression) do order the piece to the beginning of the schedule (after the already scheduled ones) !
2. If ,"cr" value considered appeared at finish of the piece („A" shaped progression) do order the piece to the end of the schedule (before the already scheduled ones) !
3. If „cr" value considered appeared both at start and at finish of the piece (,,parallel" progression) you are free to chose either $\{1$.$\} or \{2$.$\} !$

F2//C $\mathbf{C}^{\text {max }} \Rightarrow$ F2/overlap/ $\mathbf{C}^{\text {max }}$

Conclusion :

Defining ,,cr" values for each piece as $\quad\left[\mathrm{cr}=\min \left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}\right]$ (,,consecutive-" to „overlapped processing") any problem that can be solved by Johnson's algorithm can be solved by modified Johnson-algorithm too.

	t_{1}	$\mathbf{c r}$	t_{2}
\mathbf{A}	8	$\mathbf{7}$	7
\mathbf{B}	6	$\mathbf{6}$	6
\mathbf{C}	5	$\mathbf{1}$	1
\mathbf{D}	1	$\mathbf{1}$	2
\mathbf{E}	5	$\mathbf{2}$	2
\mathbf{F}	3	$\mathbf{3}$	5
\mathbf{G}	3	$\mathbf{2}$	2
\mathbf{H}	3	$\mathbf{3}$	8
\mathbf{I}	8	$\mathbf{2}$	2
\mathbf{J}	7	$\mathbf{4}$	4
\mathbf{K}	2	$\mathbf{2}$	6
\mathbf{L}	4	$\mathbf{1}$	1

Proofing optimality of schedules constructed by modified Johnson-algorithm

Definition : A schedule is callad „quasi o-shaped" if $\mathrm{F}_{\mathrm{i}} \leq \mathrm{S}_{\mathrm{i}} \quad$ and $\quad \mathrm{F}_{\mathrm{j}} \geq \mathrm{S}_{\mathrm{j}} \quad \mid \quad i<j$
(„V-shaped" progression at start, „A-shaped" progression at end)
Theorem : There exists at least one optimal schedule that is quasi o-shaped

Proof : Let assume we found an optimal schedule that is not quasi o-shaped. Make it quasi o-shaped ! ...

,$D_{\text {pred }}$,

Dpred,

We find:

$$
\begin{aligned}
& D_{\text {succ }}^{\prime}=F_{i}=S_{j}<F_{j}=D_{\text {succ }} \\
& D_{\text {pred }}=S_{j}+\delta_{j}=S_{j}+S_{i}-F_{j}<S_{i}=D_{\text {pred }}
\end{aligned}
$$

After transforming an optimal schedule that had not been quasi oshaped into a quasi o-shaped one completion time ($C^{\text {nax }}$) did not increase.

Conclusion : Originating from any (optimal) schedule that is not quasi o-shaped we can construct an other (optimal) schedule that is quasi o-shaped.

Proofing optimality of schedules constructed by modified Johnson-algorithm

Definition : Let g indicate the last piece with V-shaped progression ($\mathrm{S}_{g}<\mathrm{F}_{g}$) in a quasi o-shaped schedule. Also let h indicate the first piece with A-shaped progression ($\mathrm{S}_{h}>\mathrm{F}_{h}$) in the same quasi o-shaped schedule. (By definition of quasi o-shaped schedule $g<h$.) A schedule is „strictly o-shaped" if

$$
\mathrm{S}_{i}>\mathrm{S}_{j} \quad \mid i<j \leq g \quad \text { and } \quad \mathrm{F}_{k}<\mathrm{F}_{l} \quad \mid h \leq k<l
$$

Theorem : There exists at least one optimal schedule that is strictly o-shaped

Proof : Let assume we found a quasi o-shaped optimal schedule that is not strictly o-shaped. Make it strictly o-shaped ! ...

We find (e.g.): $D_{\text {succ }}{ }^{\prime}=F_{i}+\delta_{i}{ }^{\prime}=F_{i}+F_{j}-S_{i}<F_{j}=D_{\text {succ }}$
$\mathrm{D}_{\text {pred }}=\mathrm{S}_{\mathrm{j}}=\mathrm{F}_{\mathrm{i}}+\delta_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}+\mathrm{S}_{\mathrm{j}}-\mathrm{F}_{\mathrm{i}} \leq \mathrm{S}_{\mathrm{i}}+\mathrm{S}_{\mathrm{j}}-\mathrm{F}_{\mathrm{i}}=\mathrm{D}_{\text {pred }}$
After transforming a quasi o-shaped optimal schedule that had not been strictly o-shaped into a strictly o-shaped one completion time ($C^{\text {max }}$) did not increase. (Use the same logic for any other cases)

Conclusion : Originating from any quasi o-shaped (optimal) schedule that is not strictly o-shaped we can construct an other (optimal) schedule that is strictly o-shaped.

Proofing optimality of schedules constructed by modified Johnson-algorithm

Theorem : If a schedule is strictly o-shaped than it is surely optimal too.

Proof :

$\mathrm{C}^{\text {max }}=\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{T}_{1}{ }^{\prime}+\mathrm{T}_{2}{ }^{\prime}$
$\mathrm{T}_{1}=\Sigma \mathrm{t}_{\mathrm{i}, 1}=$ const \quad and $\quad \mathrm{T}_{1}{ }^{\prime}=\Sigma \mathrm{t}_{\mathrm{i}, 2}=$ const
$\mathrm{C}^{\text {max }}=\min \quad \mid \quad \mathrm{T}_{2}=\min \quad$ and $\quad \mathrm{T}_{2}{ }^{\prime}=\min$
See definition of strictly o-shaped schedule ...
Recognition :
Using Johson's algorithm or modified Johnsonalgorithm we make a strictly o-shaped schedule.

Remark :
The condition if any of ,pre-emption allowed" (machines need not work with no break) is irrelevant at $\mathrm{F} 2 / / \mathrm{C}^{\max }$ and F2/overlap/C ${ }^{\text {max }}$ problems.

