BASICS OF SCHEDULING

(planning – accomplishment – management)

	Activity	Y																١	No	rk	da	y			
ID	Name	Time	Resource	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Topsoil removal	2 d	1 bulldr																						
2	Step embankment	4 d	10 labr				1																		
3	Levelling	1 d	1 grader																						
4	Ditch excavation	2 d	1 excr																						
5	Blinding	3 d	5 labr																						
6	Formwork	3 d	2 carpr																						
7	Reinforcement	5 d	4 rodm									1	1												

T = f(\$, \$, I, mp, ...)

- § : law & regulation
- *\$* : financing
- **I**: location
- **m** : technology
- **p**: time period

PRE-TENDER REPORT (Site Survey)

Systematic audit of all facts and factors at the site that may have great influence on accomplishment

Nature:	Geology and Topography
	Flora and Fauna (Environm.Prot.)
	Watershed (Permanent, Seasonal)
	Weather Conditions (Extremities)
	:
Human:	Nearby Municipalities, Agriculture
	Local Laws and Regulations
	Local Authorities (Permits,)
	Local Customs (Holidays,)
	Education (Communication,)
	Location, Accessing the Site
	:
Resource:	Local Manufacturers and Suppliers
	Local Labour Capacities
	Local Mines, Pits, Deposits
	Concurrents Local Projects
	Transport Capacities
	Accomodation Capacities
	•

WORK BREAK-DOWN STRUCTURE (WBS)

- Decision Actuality / Circumstances
- Decision Level / Responsibility
- Time-span / Term
- Function / Delivery
- Structure / Unit
- Technology / Contracting
- Measurability / Controlling
- Division / Management
- :
- Experience / Database

typical/frequent, quantified, qualified, ..., accurately identified items with reference codes, structured

WORK BREAK-DOWN STRUCTURE (**WBS**) monolithic drain new embankment old temporary dust road R.C.wall body (widening) embankment topsoil loadbearing subsoil 01 Preparing the site 11 Wood works 01-01 Cutting bushes and trees 11-04 Formworking foundation slab 11-04-02 Preparing formwork sheets 01-03 Pre-liminary earthworks 01-03-02 Demolishing and depositing top soil 11-04-05 Assembling and supporting 01-03-06 Stepping old embankment 11-04-11 Removing formwork 01-03-09 Levelling the ground 11-04-12 Repairing formwork sheets 01-08 Constructing temporary access road 11-06 Formworking wall 01-18 Constructing temporary supply lines 11-06-02 Preparing formwork sheets 11-06-04 Assembling and supporting internal formwork 03 Mass earthworks 11-06-06 Assembling external formwork 03-03 Excavating foundation ditch 11-06-09 Scaffolding and supporting external formwork 03-05 Refilling ditch by wall 11-06-11 Removing formwork 03-06 Constructing embankment 11-06-12 Repairing formwork sheets 03-07 Constructing filter body 03-09 Levelling the ground 17 Steel works 17-02 Pre-fabricating reinforcement 07 Concrete works 17-02-01 Cutting and bending 07-01 Blinding 17-02-03 Transporting 07-04 Concreting foundation slab 17-02-05 Pre-assembling 07-06 Concreting wall 17-04 Assembling foundation slab reinforcement 07-32 Constructing dewatering channels 17-06 Assembling wall reinforcement

By Complexity:Production process (head of div.)(responsible)Building process (site engineer)Technology process (engineer)Activity (foremen, groupleaders)Motion (engineer + foremen)

BUTE DCTM / Engineering Programs in English / 2000-

BUTE DCTM / Engineering Programs in English / 2000-

SCHEDULE REPRESENTATIONS

	Activity		Schedul	e		Resource		Domoult
ID	Name	Time	Start	Finish	Crew	Machine	Cost	Kelliark
1	Demolish top soil	2d	02.03.1998	04.03.1998		1 bullr	£250	Depo. on site
2	Stepping old slope	4d	03.03.1998	06.03.1998	10 labr		£900	h = 1m
3	Levelling ground	1d	05.03.1998	05.03.1998		1 gradr	£200	
4	Excavating ditch	2d	06.03.1998	09.03.1998	3 labr	1 excr	£430	15% by labr
5	Blinding	3d	09.03.1998	11.03.1998	5 labr		£530	
6	Formworking	3d	11.03.1998	13.03.1998	2 carpr		£850	
7	Reinforcement	5d	11.03.1998	17.03.1998	4 steelfr		£1410	prefabr. 35%

a-numeric – Tabular - Timetable

1Dimensonal – Bar Chart – Gantt Chart

	Activity																	W	ork	king	g da	ys			
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Demolish top soil	2d	1 bullr																						
2	Stepping old slope	4d	10 labr				· · · · · ·																		
3	Levelling ground	1d	1 gradr																						
4	Excavating ditch	2d	1 excr																						
5	Blinding	3d	5 labr																						
6	Formworking	3d	2 carpr																						
7	Reinforcement	5d	4 steelfr																						

2Dimensional – Linear Schedule - Cyclogram

	Activity																		W	ork	ing	day	ys			
ID	Name	Time	Ini	Sect	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Formworking slab	8d	fs										Ň	<u>b</u> r			/	. /						, AN	5	
2	Reinforcing slab	12d	rs	300									cðĺ				10,24	Ĩ.					ູາ	-Pr		
3	Concreting slab	12d	cs	500						,c,×	pr		Ζ	/			ds 16				M	\square	4		$\overline{\ }$	/
4	Demolishing formw.	4d	ds	200						9 33	1+3101	DI								Ŕ	<i>x</i> dit	.350	1+3101 61b	×	P	~
5	Formworking wall	8d	fw	200				\square				14-3161							ŝ	4		12	CW			Dr.+10
6	Reinforcing wall	12d	rw	100		Ň	or		/		ds ,								\land	/	/	· _	~		d _k	Ÿ
7	Concreting wall	12d	cw			CRÎ	$\langle \cdot \rangle$	/	1431							. cP	+210			/			Dr+4lb			
8	Demolishing formw.	4d	dw					ds ,							fv			/				d _t	\$7			

RESOURCES

anything and everything that is needed ... and ... bounded

Material

- Construction material (earth, wood, metal, concrete, ...)
- Auxiliary structures (formwork, timber, scaffold, \dots)
- Fuel (gas, petrol, electricity, ...)

Human

- Management (leadership, know-how, authority, ...)
- Skilled workers (mason, steel-fitter, carpenter, plumber, ...)
- Labourers (unskilled, universal, trained workers, ...)

Equipment

- Heavy equipment (excavator, bulldozer, crane, truck, ...)
- Auxiliary machinery (mixer, floater, finisher, pump, ...)
- Power tools (cutter, drill, welding set, pin vibrator, ...)

Time Area Money

STANDARDS

Ways of establishing Standards

- Statistical analysis (bulk processing)
- Technical analysis (estimates)
- Hystorical analogies (comparision)
- Measuring performance (timing)

Basic types of Standards

- Performance standard [time/unit] (h/m³,h/to,..)
- Standard output [unit/time] (m³/h,to/h,pcs/h,..)
- Material standard [volume/unit] (m³/pc,..)
- Storage standard [volume/area] (pcs/m²,..)
- Cost standard [cash/unit] (\$/pcs,\$/to,\$/m²,..)

Adjusting Standards

- *l*<1: Location factor (disadvantageous access) (*position of equipment can not be optimal*)
- *t*<1: Time efficiency factor (too much time loss) (*much time to spend for technical breaks*)
- ... : ... (...)
- r<1: Resource factor (unfavorable material)
 (gluey or hard soil, sensitive structure)</pre>

$$\mathbf{N}_{\mathrm{eff}} = \mathbf{N}_{\mathrm{stnd}} \cdot l \cdot t \cdot \ldots \cdot r$$

V : volume [unit] (of product)

- n : performance [time/unit] (for a unit resource labour)
- N : output [unit/time] (for a unit resource equipment)

W: work [time] (for a unit resource)

- C : capacity [unit] (allocated resource units)
- D : duration [time] (for resource units allocated)

TIMING RELATIVE

Consecutive Link

	Activi	ty						S	che	dul	e				
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12
1	Excavate ditch	3d	8 labr		8										
2	Formworking	5d	6 carpr						6						
3	Reinforcement	4d	5 steelfr										4	5	
			15												
			10												
			-		8				6						
			5						0					5	

Parallel Link

0

	Activi	ty						S	che	dul	e				
ID	DNameTimeCree1Excavate ditch3d8 lai				2	3	4	5	6	7	8	9	10	11	12
1	Excavate ditch	3d	8 labr		8										
2	Formworking	5d	6 carpr			6									
3	Reinforcement	4d	5 steelfr		4	5									

15	19						
10		11					
5			6				
0							

Overlapped Link

	Activi						S	che	du	le					
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12
1	Excavate ditch	3d	8 labr		8										
2	Formworking	5d	6 carpr				6								
3	Reinforcement	5 steelfr						5							
			15			14									
			10					11							
			-	8											
			5							5					
			0												

BUTE DCTM / Engineering Programs in English / 2000-

Synchronization

(the ultimate parallels)

U.S.: Ford, model-T, serial production "Production-Belt System"

Historical Relations

Belt-System Construction / Industrialization After-War (II) Reconstruction (Lack of Resources / Bulk of Needs)

Typical: Infrastructure development (*highway, railway, public services, etc.*)

RESOURCE MANAGEMENT

Capacity-typed (not storable) resources

$$W = \sum_{i=1}^{T} d_i = \sum_{i=1}^{25} d_i = 286 \qquad av = \frac{W}{T} = \frac{286}{25} = 11.44 \qquad k = \frac{m}{av} = \frac{17}{11.44} \approx 1.486$$

W = total work performed [workers>day] T = total execution time [day] d_i = daily work performed [workers>day] i = day index av = average of workers employed a day [workers]
m = maximum of workers employed a day [workers]
k = resource variency indicatrix

- e.g.:
 - Labour
 - Equipment
 - Electricity

Loss in utilization can not be recovered (*Efficiency has great importance*)

RESOURCE MANAGEMENT

Stock-typed (storable) resources

	Schedule of Resource [1000m³/day] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
																							Т	- 24		
Delivered (d _i)			2	2	2	2	2				2	2	2	1									-	- 4.	, →	
Built-in (b _i)					1	1	2	2	2			2	2	1		1	1	1	1							

$$D_{i} = \sum_{j=1}^{i} d_{j} \qquad B_{i} = \sum_{j=1}^{i} b_{j} \qquad s_{i} = D_{i} - B_{i} \qquad S = \max_{i} \{ s_{i} \} \qquad i = 1, 2, ..., T$$

 $\begin{array}{ll} D_i = \text{cummulated amount of resource delivered by the day ,,i"} [m^3] & i, j = day indices \\ B_i = \text{cummulated amount of resource built-in by the day ,,i"} [m^3] & s_i = \text{amount of resource to be stored on the day ,,i"} [m^3] & S = \text{store/depo capacity needed} \\ d_i = \text{amount of resource delivered on the day ,,i"} [m^3] & b_i = \text{amount of resource built-in on the day ,,i"} [m^3] & \end{array}$

e.g.:

- Material
- Structure
- Fuel

Transport and storage has great importance (*Top-time delivery can save money*)

RESOURCE MANAGEMENT

Renewable (recycled) resources

	Activity							S	che	dul	e of	Re	sou	rce	Us	e (a	4ki) [100	m ²	/day	y]						
ID	Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	Internal formwork			5	5	5	5	5	5	5	5	5	5	5	5									Т	25	5	
2	External formwork				6	6	6	6	6	6	6	6	6	6	6	6											
3	Partitioning formwork				1			1			1			1			1										
4	Remove internal formw.						-5	-4	-5	-5	-4	-5	-5	-4	-5	-5	-4	-5									
5	Remove external formw.							-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5								
6	Remove partit. formw.							-1			-1			-1			-1			-1							

 a_{ki} = set of resource assigned to (used at or produced by) activity ,,k" on day ,,i" $\left[m^2\right]$

 d_i = increment of set "in-use" on the day "i" $[m^2]$

i, j = day indices
 k = activity index
 n = number of activities
 T = total execution time [day]

e.g.:

- Top-Soil / Plantage
- Earth / Rubbish

 $D_i = \text{set }, \text{in-use'' on the day }, \text{i''} [m^2]$

S = necessiated set (stock) of resource [m²]

- Auxiliary / Temporary Structures

Minimal loss (savings) has great importance (Environment protection has preference)