Multiattribute decision making

Mályusz Levente
Department of Construction Technology and Management

Problem / raising questions

Given:

- \bullet Objects and know their properties, Object: house, plot, offer, plan \ldots
- Features/attributes: cost of construction, running costs, deadline ...
- Let's put the objects in some order of importance

Department of Construction Technology and Managemen

Methods

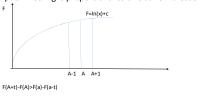
- Pairwise comparison?
- Multicriteria optimization?
- Multiattribute Optimization?

Department of Construction Technology and Managemen

Evaluating steps

- I select objects to compare,
- II. defining the evaluation factors and their weights, which can usually be achieved by organizing the evaluation factors by tree structure,
- III. then the objects must be evaluated according to the evaluation factors, ie the value of each object must be determined according to each evaluation factor,
- IV. selecting the evaluation procedure/method and carrying out the

Department of Construction Technology and Management

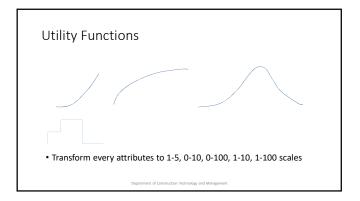

Scales 1.

- Nominal scale: dwelling house, not quantifiable, only frequency of occurrence can be investigated
- Ordinary Scale: Grades, "Better" or "Multiple" are the catchy (median, mean?)
- Interval Scale: Temperature, Time; the difference can be grasped, the ratio does not make sense Scale: consumption, Kelvin (temperature scale)
- Ratio scale: consumption (Kelvin temperature scale)

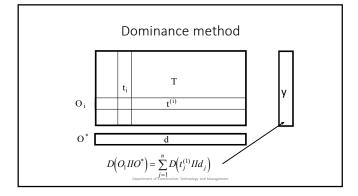
Department of Construction Technology and Management

Daniel Bernoulli: Risk aversion

• Assumption: feeling is proportional to a relative increase in wealth


physical stimulus and the *perceived* change

- Earnst Heinrich Weber (1795-1878) quantify human response to a physical stimulus
- $\bullet \ \, \text{Weber-Fechner law: logaritmic function, f=const1*In(x)+const2} \\$
- Stanley Smith Stevens, 1906-1973,


Department of Construction Technology and Management

Stevens's law						
Continuum	Exponent (a {\displaystyle a})	Stimulus condition				
Loudness	0.67	Sound pressure of 3000 Hz tone				
Vibration	0.95	Amplitude of 60 Hz on finger				
Vibration	0.6	Amplitude of 250 Hz on finger				
Brightness	0.33	5" target in dark				
Brightness	0.5	Point source				
Brightness	0.5	Brief flash				
Brightness	1	Point source briefly flashed				
Lightness	1.2	Reflectance of gray papers				
Visual length	1	Projected line				
Visual area	0.7	Projected square				
Redness (saturation)	1.7	Red-gray mixture				
Taste	1.3	Sucrose				
Taste	1.4	Salt				
Taste	0.8	Saccharine				
Smell	0.6	Heptane				
Department of Construction Technology and Management						

Scales 3. 1-10 or 1-100..... 1-10 vagy 1-100? T₁. T₂. 16 26 42 O₂. 24 19 43 2 3 5 01. O₂.

Divergence functions: Euclidean Difference

• Definition: Divergence the vector of $\underline{\mathbf{a}}$ =($a_1,...,a_j,...,a_n$) from vector $\underline{\mathbf{b}}$ =($b_1,...,b_2,...b_n$) is the value of the following expression:

$$D(\underline{a}II\underline{b}) = \sum_{j=1}^{n} \left((a_1 - b_1)^2 + (a_2 - b_2)^2 \right)$$

- 1. D(<u>a</u>II<u>b</u>)≥0,
- 2. $D(\underline{\mathbf{a}} \underline{\mathbf{n}} \underline{\mathbf{b}}) = 0$ if and only if, ha $\underline{\mathbf{a}} = \underline{\mathbf{b}}$. 3. $D(\underline{\mathbf{a}} \underline{\mathbf{l}} \underline{\mathbf{b}}) = D(\underline{\mathbf{b}} \underline{\mathbf{l}} \underline{\mathbf{a}})$

Divergence functions: Kullback-Leibler

• Divergence the vector of $\underline{\mathbf{a}} = (a_1, ..., a_j, ..., a_n) > 0$ from vector $\underline{\mathbf{b}} = (b_1, ..., b_2, ...b_n) > 0$ is the value of the following expression:

$$D(\underline{a}II\underline{b}) = \sum_{j=1}^{n} \left(a_{j} \ln \frac{a_{j}}{b_{j}} - a_{j} + b_{j} \right)$$

- 1. $D(\underline{\mathbf{a}}\Pi\underline{\mathbf{b}}) \ge 0$, 2. $D(\underline{\mathbf{a}}\Pi\underline{\mathbf{b}}) = 0$ if and only if $\underline{\mathbf{a}} = \underline{\mathbf{b}}$. 3. $D(\mathbf{a}||\mathbf{b}) \ne D(\mathbf{b}||\mathbf{a})$

A priori (prior to the event), a posteriori (after the event)

• The vector "a" is after the "a posteriori" event Vector "b" in a pre-event (prior to the event) role

$$D(\underline{a}II\underline{b}) = \sum_{j=1}^{n} \left(a_{j} \ln \frac{a_{j}}{b_{j}} - a_{j} + b_{j} \right)$$
After event, Prior to the event notion

Department of Construction Technology and Management

Dominance method

	E ₁ .	E ₂ .	E ₃ .	E ₄ .	E ₅ .	E ₆ .	
O_1 .	1	2	4	2	1	4	
O ₂ .	2	3	3	2	1	1	
O ₃ .	3	3	2	3	4	1	
O ₄ .	4	2	1	1	3	2	
dominá	ns (d) 4	3	4	3	4	4	

 $\sum_{j=1}^{n} D(t_{j}^{(1)} IId_{j}) = 1 \ln \frac{1}{4} - 1 + 4 + 2 \ln \frac{2}{3} - 2 + 3 + 4 \ln \frac{4}{4} - 4 + 4 + 4$

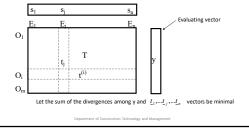
 $\frac{1}{f_{-1}} \left(\frac{2}{3} - \frac{2}{3} + 3 + 1 \ln \frac{1}{4} + 1 + 4 + 4 \ln \frac{4}{4} + 4 + 4 = 3.605 \right)$

 $\begin{array}{lll} 4 \ln \frac{4}{4} - 4 + 4 + & y_1 = D(t^{(1)} IId) = 3.605 \\ & y_2 = D(t^{(2)} IId) = 4.167 \\ & y_3 = D(t^{(3)} IId) = 2.364 \\ & y_4 = D(t^{(4)} IId) = 3.454 \end{array}$

 $\sum_{j=1}^{n} a_j = 1 \quad \sum_{j=1}^{n} b_j = 1$

Department of Construction Technology and Management

Hellinger, Pearson, Fischer divergence functions


$$D_{H}(\underline{a}\underline{I}\underline{I}\underline{b}) = \sum_{i=1}^{n} \left(\sqrt{b_{j}} - \sqrt{a_{j}}\right)^{2}$$

$$D_{p}(\underline{a}II\underline{b}) = \sum_{j=1}^{n} \frac{\left(b_{j} - a_{j}\right)^{2}}{b}$$

$$D_F(\underline{a}\underline{H}\underline{b}) = \sum_{j=1}^n b_j \log \frac{b_j}{a_j}$$

Department of Construction Technology and Management

I. elv. Bridgman model (minimize average deviation)

Bridgman model 1.

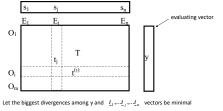
- Our task is therefore to look for a mean vector y, for which the average deviation is minimum.
- $\min \sum_{j=1}^{n} s_{j} D(\underline{y} H \underline{t}_{j})$
- It is minimum if

$$\frac{\partial D(\underline{y}II\underline{t})}{\partial y_i} = 0; \quad i = 1,...m$$

epartment of Construction Technology and Management

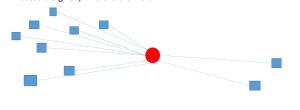
Bridgman model 1

$$\begin{split} \frac{\partial D(\underline{y}H\underline{t})}{\partial y} &= \frac{\partial \sum_{j=1}^{n} s_{j} \left(y_{i} \ln \frac{\underline{y}_{i}}{t_{ij}} - y_{i} + t_{ij} \right)}{\partial y_{i}} = \sum_{j=1}^{n} s_{j} \left(\ln y_{i} + \frac{\underline{y}_{i}}{y_{i}} - \ln t_{ij} - 1 \right) \\ &= \sum_{j=1}^{n} s_{j} \left(\ln y_{i} - \ln t_{ij} \right) = 0 \\ y_{i} &= \exp \left(\sum_{j=1}^{n} s_{j} \ln(t_{ij}) \right) = \prod_{j=1}^{n} t_{ij}^{s_{j}}, i = 1, \dots, m; \\ \text{Department of Construction Includings and Management.} \end{split}$$

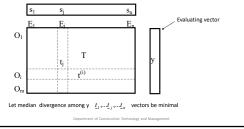

Bridgman model 2.

- Our task is therefore to look for a mean vector y, for which the average deviation is
- minimum.

$$\min \sum_{j=1}^{n} s_{j} D(\underline{t}_{j} II \underline{y})$$


• minimum.
$$\min \sum_{j=1}^n s_j D(t_j H \underline{y})$$
 • It is minimum if
$$y_i = \sum_{j=1}^n s_j t_{ij}, i = 1, \dots, m$$

II. elv. Arimoto- Blahut model (minimizing maximum deviation)



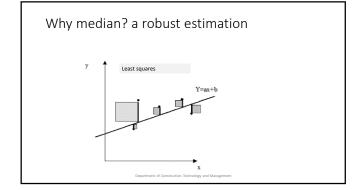
Houses and the problem of the well

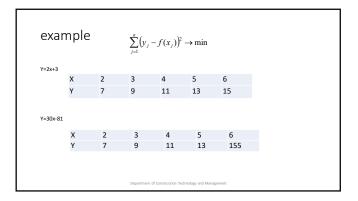
• Houses are given, where is the well?

III. Robust estimattion (minimizing median deviation)

Principles for determining the evaluation vector

• Let's examine the degraph of the difference between y and $t_1,\dots t_r,\dots t_n$ vectors


vectors Let the largest difference between y and t_1,\dots,t_s vectors be minimal Let the median deviation between y and the t_1,\dots,t_s vectors be minimal


Department of Construction Technology and Management

Mathematical problems:

$t_{i,j} > 0, (i = 1,,m)(j = 1,n,)$	$t_{i,j} \ge 0$, $(i = 1,,m)(j = 1,n,)$
Problem A1.: $\min \sum_{j=1}^{n} w_j D(\underline{y} H \underline{t}_j)$	Problem A2.: $\min \sum_{j=1}^{n} w_j D(\underline{t}_j H \underline{y})$
Problem B1.: $\min_{y} \max_{j} D(\underline{y}II\underline{t}_{j})$	Problem B2.: $\min_{y} \max_{j} D(\underline{t}_{j} II \underline{y})$
Problem C1.: $\min_{y} \max_{j} D(\underline{y}II\underline{t}_{j})$	Problem C2.: $\min_{y} \max_{j} D(\underline{t}_{j}II\underline{y})$

Department of Construction Technology and Manageme

Exam	ple c	ont.								
$\sum_{j=1}^{n} (y_{j} -$	$f(x_j)^2$	\rightarrow min			mea j	$d(y_j - a)$	$ax_j - l$	$b)^2 \rightarrow$	min	
	Х	2	3	4	5	6				
	Υ	7	9	11	133	155				
Y=42X-1(05					Y=2X+3				
Department of Construction Technology and Management										

•		