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Problem / raising questions

Given: 
• Objects and know their properties, Object: house, plot, offer, plan ....

• Features/attributes: cost of construction, running costs, deadline ...

• Let's put the objects in some order of importance
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Methods

• Pairwise comparison?
• Multicriteria optimization?
• Multiattribute Optimization?
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Evaluating steps

• I select objects to compare,
• II. defining the evaluation factors and their weights, which can 

usually be achieved by organizing the evaluation factors by tree 
structure,

• III. then the objects must be evaluated according to the evaluation 
factors, ie the value of each object must be determined according to 
each evaluation factor,

• IV. selecting the evaluation procedure/method and carrying out the 
evaluation,
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Scales 1.

• Nominal scale: dwelling house, not quantifiable, only frequency of 
occurrence can be investigated

• Ordinary Scale: Grades, "Better" or "Multiple" are the catchy (median, 
mean?)

• Interval Scale: Temperature, Time; the difference can be grasped, the 
ratio does not make sense Scale: consumption, Kelvin (temperature 
scale)

• Ratio scale: consumption (Kelvin temperature scale)
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Daniel Bernoulli : Risk aversion

• Assumption: feeling is proportional to a relative increase in wealth

AA-1 A+1

F(A+t)-F(A)>F(a)-F(a-t)

F
F=ln(x)+c
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physical stimulus and the perceived change

• Earnst Heinrich Weber (1795-1878) quantify human response to a 
physical stimulus

• Weber–Fechner law: logaritmic function, f=const1*ln(x)+const2
• Stanley Smith Stevens, 1906-1973, 
• Stevens’s power law: power function, f=const*xα
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Divergence functions, „sensation function”
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Stevens’s law…
Continuum Exponent ( a {\displaystyle a} ) Stimulus condition

Loudness 0.67 Sound pressure of 3000 Hz tone

Vibration 0.95 Amplitude of 60 Hz on finger

Vibration 0.6 Amplitude of 250 Hz on finger

Brightness 0.33 5° target in dark

Brightness 0.5 Point source

Brightness 0.5 Brief flash

Brightness 1 Point source briefly flashed

Lightness 1.2 Reflectance of gray papers

Visual length 1 Projected line

Visual area 0.7 Projected square

Redness (saturation) 1.7 Red-gray mixture

Taste 1.3 Sucrose

Taste 1.4 Salt

Taste 0.8 Saccharine

Smell 0.6 Heptane
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Utility Functions

• Transform every attributes to 1-5, 0-10, 0-100, 1-10, 1-100 scales
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Scales 3. 1-10 or 1-100…………………

T1. T2.
O1. 16 26 42

O2. 24 19 43

O1. 2 3 5

O2. 2 2 4

1-10 vagy 1-100?
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Dominance method
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Divergence functions: Euclidean Difference

• Definition: Divergence the vector of a=(a1,...,aj,...,an) from vector
b=(b1,...,b2,...bn) is the value of the following expression:
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1. D(aIIb)0,
2. D(aIIb)=0 if and only if, ha a=b.
3. D(aIIb)=D(bIIa)
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Divergence functions: Kullback-Leibler
• Divergence the vector of a=(a1,...,aj,...,an) >0 from vector

b=(b1,...,b2,...bn) >0  is the value of the following expression:
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1. D(aIIb)0,
2. D(aIIb)=0 if and only if a=b.
3. D(aIIb)D(bIIa)
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A priori (prior to the event), a posteriori (after
the event)
• The vector „a” is after the "a posteriori" event

Vector „b” in a pre-event (prior to the event) role
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Dominance method
E1. E2. E3. E4. E5. E6.

O1. 1 2 4 2 1 4
O2. 2 3 3 2 1 1
O3. 3 3 2 3 4 1
O4. 4 2 1 1 3 2

domináns (d) 4 3 4 3 4 4
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y1=D(t(1)IId)=3.605
y2=D(t(2)IId)=4.167
y3=D(t(3)IId)=2.364
y4=D(t(4)IId)=3.454
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Hellinger, Pearson, Fischer divergence
functions
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I. elv. Bridgman model (minimize average
deviation)
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Evaluating vector

Let the sum of the divergences among y and                             vectors be minimalnj ttt ,...,...1
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Bridgman model 1.

• Our task is therefore to look for a mean vector y, for which the 
average deviation is
minimum.

•

•

• It is minimum if
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Bridgman model 1
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Bridgman model 2.

• Our task is therefore to look for a mean vector y, for which the 
average deviation is

• minimum. 

• It is minimum if
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II. elv. Arimoto- Blahut model (minimizing
maximum deviation)
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Let the biggest divergences among y and                             vectors be minimalnj ttt ,...,...1
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Houses and the problem of the well

• Houses are given, where is the well?
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III. Robust estimattion (minimizing median 
deviation)
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Let median divergence among y                              vectors be minimalnj ttt ,...,...1
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Principles for determining the evaluation 
vector

• Let's examine the deviation from the ideal
Let minimum the sum of the difference between y and
vectors 
Let the largest difference between y and vectors be minimal
Let the median deviation between y and the vectors be 
minimal

nj ttt ,...,...1
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nj ttt ,...,...1
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Mathematical problems:
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Why median? a robust estimation

Least squares
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example

Y=2x+3

X 2 3 4 5 6
Y 7 9 11 13 155

X 2 3 4 5 6
Y 7 9 11 13 15

Y=30x-81
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Example cont.

Y=2x+3

X 2 3 4 5 6
Y 7 9 11 13 155

X 2 3 4 5 6
Y 7 9 11 13 15

Y=2x+3

  min2  baxymed jj
j
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Example cont.

X 2 3 4 5 6
Y 7 9 11 133 155

Y=42X-105 Y=2X+3 
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