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Abstract 

 
At Flow-Shop Problems the job is to schedule work of n machines on m workpieces 
for to achieve a pre-set optimum – say, the shortest overall execution time. Analogy of 
it can be recognized at managing Industrialized Construction. Main challenge of 
Flow-Shop Schedules is that the mathematical problem is Non-Polynomial, and – 
except of some special cases – the correct solution can be gained by some kind of 
enumeration. For testing and demonstrating effect of sequences on overall execution 
time of a Master Schedule embracing execution of numerous sub-projects a special 
software had been developed at BUTE DCT&M. After testing numerous principal 
ways of achieving optimal solutions our researches lead us to the experiences:  

1. Neither the simple nor the more sophisticated search algorithms for finding optimal 
solutions proved to be more effective than the most primitive way of random 
sampling;  

2. Solutions later prove to be optimal or very close to optimum (pseudo-optimal 
solutions) may get in view in a relatively short time, but proving their optimality 
takes significantly longer.  

The paper focuses on later lesson and introduces some ways of estimating optimum of 
F||Cmax problem via elaborating lower bounds by help of which we can guess how far 
the found or constructed solutions are from the optimum and/or how much efforts to 
find even better ones are likely necessiated. 
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PREFACE 

 
For graphical representation of ideas to be discussed on following pages instead of 
using one-dimensional schedules (known as Bar Charts or Gantt Charts) usually 
applied at discussing scheduling (sequencing) problems, we illustrate our thoughts by 
two-dimensional time-route diagrams known as progression curves, cyclograms or as 
linear schedules, as seen below. Horizontal axis of these diagrams is Time while along 
vertical axis Progression can be read in any proper dimension such as m, m2, m3, ton, 
%, €, etc., that is a common characteristic of all processes (jobs) being scheduled. 
 
 

Figure 1 

 
Two-dimensional 

representation of 

timing processes 

(1,2,3) of a project  

(here: workpiece) 
 
 
 
Processes are represented by individual lines (See: line „1”, „2” and „3” above) slopes 
of which can be read as intensity of progression, while durations of processes (P1, P2, 
P3)  and timing of them (e.g. succession times between them either at start: S1, S2 or at 
finish: F1, F2) can be read as horizontal (time) views of their linear representations. 
 
For succeeding processes with or without overlapping in time, minimum succession 
times (technological breaks or critical approaches succeeding the given processes 
represented by B values) are used to set minimum of their non-overlapping period. 
 
Ranges/values of critical approaches can be defined/selected tipically by considering 
technical-technological constraints, such as time of hardening, cooling, drying, 
consolidating, etc. as constant values or can be set as functions of progression due to 
needed manipulation area or safety zones or on-site storage capacities and so on. 
Guiding relative timing of processes this way any relative time position, lead or lag 
time can be set.  
 
The schedule of a workpiece in which all the succession times between succeeding 
processes are at their minimum (set by B values) we do refer as own-schedule or most 
compact schedule of it (as if it was processed in its own). These most compact own-
schedules of workpieces will be released (succession times between neighbouring 
processes can and will be increased) as requires when combining or linking them up in 
a Master Schedule. 
 
Thus the problem of forming a Master Schedule and finding on optimal sequence of 
workpieces for to achieve the shortest overall completion time can be derived back to 
the problem of matching pairs of succesion vectors (succession times „Fk” at finish on 
preceeding workpiece and succession times „Sl” at start on succeeding workpiece). 
(See: Figure 2.) 
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Figure 2 Releasing own-schedules of projects/workpieces (k and l) when linking them up in a 

Master Schedule with expectation of breakless performance of processes/machines. 

(Detail of the Master Schedule is to the right.) 

 
 
 
 
 
 
 
 
 
 

INTRODUCTION 

 
Though thinking it over in short it can be seen clearly, it is less widely known that 
sequence of buildings to be erected may have significant effect on completion time of 
the buildings themselves and on overall completion time of all when having the same 
resources assigned to them (see Figure 3). 
 
The phenomenon is well-known in manufacturing industry and much effort have been 
made to help scheduling workpieces to achieve a pre-set optimal characteristic of the 
whole production program, thus calling into existence a special branch of applied 
mathematics (Operations Research) referred as Scheduling.  
 
In 1973 researchers had suggested a reference system to identify scheduling problems 
by classification, indicating availability of resources and further restrictions completed 
by identification of actual target function [4]. Using their coding system Scheduling 
Problem discussed can be identified as F|overlap, no-wait|Cmax to be read as: 
 

The job is a so called Flow-Shop scheduling with no limit on number of machines 
(‘F’), where overlapping in time is allowed when processing a workpiece by  
succeeding machines, machines should not wait when shifting from a workpiece 
to an other (‘overlap, no-wait’), and the aim is to minimize the overall execution 
time identified by completion time of the last workpiece (‘Cmax’). 

 
Flow-Shop as a basic class of scheduling problems embraces a set of conditions on 
production environment: 
 

• There are ‘m’ workpieces to be scheduled on ‘n’ machines (each workpiece must 
be processed by each machine); 

• Order of machines at processing workpieces is given and is the same for each 
workpiece (technological order of machines is fixed and known); 

• Order of workpieces must be the same on each machines; 

• Machines are performing their only job (special machines for each process); 

• Each process is performed by one machine (one machine is available for each 
kind of processes). 
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To demonstrate variety of scheduling problems and their coding we can mention Job-
Shop scheduling (J), where technological orders of machines are given in advance but 
may differ by workpiece; P refers to situation when parallel machines are used and 
each machine can perform any job; pre-emption indicates when processing of a 
workpiece can be broken at machines; idle refers to allowed workless periods of 
machines between succeeding workpieces, while no-wait warns us when it is 
unacceptable; res1,res2 identifies limited availability of resources; target function can 

be minimum of sum of completion times (ΣCi), minimum of sum of delays-,  lateness- 

or tardiness (ΣDi, ΣLi, ΣTi) too; and so on – to mention the most frequent ones only. 
 

Figure 3   Demonstrating effect of sequence of workpieces (‘A’ and ‘B’) to be processed by two 

machines (‘a’ and ‘b’). At top we see the most compact individual own-schedules of 

workpieces with technological breaks indicated (grey stripes, indicating minimum 

succession times between succeeding jobs). Below we see Master Schedules constructed 

off them sequencing the two wokpieces in order of B→A and another variant of it 

sequencing the workpieces in order of A→B. Both variants of the Master Schedule are 

the most compressed ones! Minimum overall completion time is (can be) strongly 

effected by the sequence of workpieces. (See ∆T) 

 

 
Difficulty is that for to solve most of the Flow-Shop Problems there is no any existing 
close formula. For to find optimum some type of enumerative algorithm [7, 8] is 
needed, which may/would take enormous run-time. Computations of these kinds are 
referred as NP-hard in technical literature, which means that time (steps) needed to 
find solution is non-polinomial, it can not be defined as n•x, or n2, n3, etc., where n 
represents the number of workpieces to be scheduled. 
 
To demonstrate difficulties of these calculations let assume a computer calculating 
one million Master Schedules (permutations) of the same 20 projects in a second. 
Well, to examine all possible permutations that computer should work for more than 

A 

B a 

a 

b 

b 

A a 
b 

B a b 

A a 
b 

B a b 

∆T 



77 thousand years (20! = 2.43·1018; 2.43·1012 sec > 77,000 years). So long machine 
time – for to solve a single problem – usually we do not have. ... 
 
F2||Cmax (Scheduling m workpieces on 2 machines) is one of a few delighting 
problems for which there exists a polynomial solution – first published by S. M. 
Johnson in 1954 [1]. Having more than two machines the problem seems to be 
stubbornly NP-hard.  
 
It is not by chance that much effort were made to derive F||Cmax scheduling problem 
back to F2||Cmax. Szwarc published an elimination method in 1971 [2] later improved 
to an optimal elimination method published by him in 1973 [3]. Also Szwarc 
published dominance conditions for F3||Cmax problem in 1978 [5].  
 
Z.A.Vattai proved optimality of Johnson’s (1954) heuristic algorithm and generalized 
the solution for overlapped situations (F2|overlap|Cmax) while introducing term of o-
shaped (master) schedules (where succession times between the processes both at start 
and at finish are at their minimum and all necessary releases have been made mainly 
in inner sections of the Master Schedule) in 1993 [9]. 
 
Time by time comprehensive overviews are published reporting latest results of 
searching faster and faster methods to find solutions for Flow-Shop Scheduling 
problems. Theoretical approaches were comprehended in Proceedings of the NATO 
Advanced Study and Research Institute in 1981 [6]. Results are adopted in up to date 
management techniques [7] and resource pool of finite mathematics [8] is enriched 
permanently by more and more sophisticated methods of supporting decision making. 
 
Recognizing difficulties of providing a sure optimum and also recognizing sensibility 
of optimal schedules (meaning: a slight modification of data can significantly effect 
final result) the empasis had turned to pseudo-optimal and practically acceptable 
solutions and to probabilistic and/or combined methods.  
 
Amy D. Wilson et al tried to estimate the optimum on statistical basis and published 
their results in 2004 [10]. R. Ruiz and C. Maroto gave a comprehensive review on 
heuristic methods applied for Flow-Shop Scheduling problems in 2005 [11]. The latest 
endeavours are focusing on generic algorithms and on development of some kind of 
hybrid heuristics for the problem, some results of which were published by M. G. 
Ravetti at al. in 2006 [12]. 
 
For testing and demonstrating effect of „Sequence” (of projects) on minimum overall 
execution time of a Master Schedule comprehending execution of numerous building 
projects („multi-project management”) a small software had been developed by the 
author at Department of Construction Technology and Management of Budapest 
University of Technology and Economics. Lessons of test runs had been published in 
2008 [13].  
 
Primary aim was to bring attention of our students (future managers) on extended 
considerations of construction management in case of executing large-scaled complex 
development works. After modelling and testing potential effects of sequences on total 
execution time we tested five principal ways of building/finding optimal sequences: 
 



1. For to gain certain optimum, and to check any other trials, enumerative algorithms 
had been developed, later improved and accelerated by some methods of filtering 
(Total-, Partial- and Implicite Enumeration); 

2. Building sequence as a kind of set of optimal matches of individual schedules – 
with the hope of deriving the problem back to a kind of Assignment Problem that 
can be solved by Linear Programming (Arranged Branch & Bound); 

3. Finding partially optimal solutions for simpler cases and extending/combining 
them for more complex situations (Johnson’s Algorithm); 

4. Producing an initial sequence and improving it gradually via series of consecutive 
modifications (Pair-wise Exchanges). 

5. Finally, for testing/measuring return of all our efforts against, a pure and primitive 
way of finding optimal sequence – by chance (Random Sampling). 

 
Due to our principal aim of testing sequencing/scheduling as a tool of resolving some 
contradictions in Construction Industry and to get real optimum, manyfold heuristics 
had been deliberately excluded from our investigations. 
 
After long times of examinations, after numerous trials and hypotheses falling apart as 
leaves from the trees none of the principal ways above proved to be either the only or 
the best way of constructing/finding the optimal sequence. None of the advanced 
techniques and/or approaches proved to be either deliberately or more outstandingly 
better or effective for our purposes than the most primitive way of Random Trials. But 
the same time, we found that elaborating a proper estimate on likely optimum is a 
more promising challenge. Having it, we could judge optimality of any sequence 
found or produced, and we could estimate likely return of our efforts to find an even 
better solution if the one produced did not seem to be optimal. ... 
 
 

ESTABLISHING A LOWER BOUND 

 
Before discussing data and algorithm some general recognition are worth to be 
highlighted. (For better understanding see Figure 4.) 
 
- Overall execution time of any Master Schedule can be divided in two segments: 

1. Overall processing time on the first machine (P1), which is a constant value, not 
varying by the sequence of workpieces. 

2. Time span between finishing the first and finishing the last process on the last 
workpiece (F) actually effected by the sequence. 

 
- Building up a Master Schedule from the very last or from the very first workpiece is 

a symmetrical problem, so the division of above can also be made as overall 
duration of processing on the last machine (Pn) and time span between starting the 
first and starting the last process on the first workpiece (S). 

 
- In an optimal Master Schedule F and S values are at their minimum so these are the 

quantities the examinations should focuse on. Thus calculations should concentrate 
on succession times, while processing times have less or indirect importance. 



 
 
 
 
 

Figure 4 
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Studying Figure 3 and Figure 4 it is easier to understand o-shaped characteristic [9] of 
an optimal Master Schedule: ‘succession times between the processes both at start and 
at finish are at their minimum while all necessary releases have been made mainly in 
inner sections of the Master Schedule’. … 
 
Denotions 

 
For faster discussion we do introduce some mnemonic denotions: 
(For better understanding recall Figure 1.) 
 
Denotions for own-schedules of workpieces 

pij =  processing time of machine j on workpiece i 

bi,j =  minimum succession time (technological break) between processes j and j+1 
on workpiece i 

si,j =  minimum succession time between starting processes j and j+1 on workpiece i 

fi,j =  minimum succession time between finishing processes j and j+1 on   
workpiece i 

si =  minimum succession time between starting the first and the last process on 
workpiece i 

fi =  minimum succession time between finishing the first and the last process on 
workpiece i 

ci =  minimum completion time of workpiece i 
 

Denotions for a fictive „optimal” Master Schedule 

Pj =  (overall) processing time on machine j in the fictive Master Schedule 

Bj =  minimum succession time (technological break) between processes j and j+1 
in fictive the Master Sschedule 

Sj =  minimum succession time between starting processes j and j+1 in the fictive 
Master Schedule 

F P1 

Time 

Progression [pcs] 

m 

1 

C 

Pn S 

C = P1 + F 

C = S + Pn 

P1 = const 

Pn= const 

Cmin ⇒ Fmin 

Cmin ⇒ Smin 



Fj =  minimum succession time between finishing processes j and j+1 in the fictive 
Master Schedule 

S =  minimum succession time between starting the first and the last process in the 
fictive Master Schedule 

F =  minimum succession time between finishing the first and the last process in the 
fictive Master Schedule 

C =  minimum completion time of the fictive Master Schedule 
 

Denotions for estimating completion time of the optimal Master Schedule 

E1, E2, E3, E = partial and overall estimates 
 
At interpreting and reading the scheduling problem and the abbreviations above 
analogy between manufacturing and construction can be highlighted by changing 
some key words, such as: 
 
- workpiece in manufacturing = building or project in construction; 
- machine in manufacturing = machine or team or subcontractor in construction 
 
Calculating own-schedules of workpieces 

 
Overlapping processes in time when erecting a building is typical in Construction for 
to shorten overall completion time. In Manufacturing, when workpieces are moving 
from machine to machine this solution can not be applied. Before going on with 
processing a given workpiece on the succeeding machine, the preceeding machine 
must finish its job. Expectation of non-overlapping in time can be considered as a 
special case of overlapping, with succession time equal to minimum of durations of 
processes linked to each-other. (See processes „2” and „3” in Figure 1 – and B2 value 
between them. B2=min{P2, P3}) 
 
bi,j = min{pi,j; pi,j+1}   i = 1,2,…,m;     j = 1,2,…,n-1  R 1.1 
 
Assuming constant intensity of processing at each process, progressions can be 
represented as straight lines in linear schedules. Thus, minimum succession times 
(critical approaches, bij values) will appear between starts or between finishes (or 
both) of succeeding processes. Thus, succession times between starts and between 
finishes of processes in the most compressed individual schedules (own-schedules) of 
workpieces can be calculated: 
 
si,j = max{bi,j; bi,j+pi,j–pi,j+1}  i = 1,2,…,m;     j = 1,2,…,n-1  R 1.2 
 
fi,j = max{bi,j; bi,j–pi,j+pi,j+1}  i = 1,2,…,m;     j = 1,2,…,n-1  R 1.3 
 
Minimum of variable part of completion times of individual workpieces can be 
calculated (See analogy on Figure 4): 

          n-1 

si = Σ si,j       i = 1,2….,m     R 1.4 
          j=1 

 



          n-1 

fi = Σ fi,j       i = 1,2….,m     R 1.5 
          j=1 

As explained at Figure 3, having the constant part and having the variable part at 
minimum, minimum completion times and most compact (own-) schedules for each 
individual workipeces can be calculated. 
 
ci = pi,1+fi = si+pi,n   i = 1,2….,m     R 1.6 
 
These schedules can/will/must be released (by increasing succession times between 
succeeding processes) when combining them into one single Master Schedule. 
 
Calculating a fictive „optimal” Master Schedule 

 
As most compact schedules were calculated for individual workpieces, the same way 
a fictive most compact Master Schedule can be caculated for the whole series for to 
estimate the theoretically achievable minimum (as lower bound). With the assumption 
that minimal succession times will appear between starts and/or between finishes of 
succeeding processes, similar logic and similar relations can be used for calculation. 
 
The only difference is that when considering individual processing times we have to 
consider overall processing times on the individual machines, and when considering 
minimum succession times (technological breaks) we have to consider the minimum 
of techonolgical breaks between processing on succeeding machines. 
 

            m 

Pj = Σ pi,j       j = 1,2….,n     R 2.0 
           i=1 

 
Bj = min{bi,j}    j = 1,2….,n-1     R 2.1 
                 i     

 
Sj = max{Bj; Bj+Pj–Pj+1}  j = 1,2….,n-1     R 2.2 
 
Fj = max{Bj; Bj–Pj+Pj+1}  j = 1,2….,n-1     R 2.3 
 

          n-1 

S = Σ Sj             R 2.4 
          j=1 

          n-1 

F = Σ Fj             R 2.5 
          j=1 

 
C = P1+F = S+Pn         R 2.6 
 
Estimating the optimum 

 
Having the individual own-schedules of workpieces and having the fictive Master 
Schedule we can establish at least three estimates as lower bounds on the shortest 
overall completion time: 



 
1.) Assuming that unreleased own-schedule of the workpiece with the shortes 
succession time between finishing the first and the last process on it can be the last in 
the optimal Master Schedule, overall completion time can not be shorter than E1 value 
calculated below: 
 
E1 = P1+min{fi}         R 3.1 
 
2.) As it was mentioned earlier, building up a Mater Schedule is a symmetrical 
problem, so we can follow similar logic when constructing it from direction of start or 
of finish. Also, assuming that unreleased own-schedule of the workpiece with the 
shortes succession time between starting the first and the last process on it can be the 
first in the optimal Master Schedule, overall completion time can not be shorter than 
E2 value calculated below: 
 
E2 = min{si}+Pn         R 3.2 
 
The two estimates (E1 and E2) can not substitute each other. We need both. 
 
3.) We also can conclude that overall completion time of the optimal Master Schedule 
can not be shorter than completion time of the fictive Master Schedule where – by 
assumption – no inner conflict within the schedule necessitate releasing minimum 
succession times between succeeding processes. 
 
E3 = C           R 3.3 
 
By our experiences none of the estimates above can be harder lower bound on the 
theoretically achievable minimum than the others. Accuracy of them is defined by the 
actual set of data. 
 
E = max{E1; E2; E3}         R 3.4 
 
Though the three estimates are hard lower bounds they may more or less fail the real 
optimum. There can be situations when the most compact own-schedule is an 
outstanding one and it can not be at the beginning and at the end of the Master 
Schedule in the same time – that is: overall processing times on individual machines 
override own-schedules of individual workpieces. Also, there can be situations when 
technological breaks are over-dominating extents of processing times, thus individual 
own-schedules are overriding overall processing times on the individual machines. 
And we can imagine any mixture of them. 
 
For practical use a kind of combination of the three estimates had been integrated in 
the software mentioned above. That is, after calculating individual own-schedules, all 
workpieces are tested to be the first, while others to be the last one in the Master 
Schedule, and the rest of workpieces are substituted by a single fictive (inner, partial 
master) schedule with processing times equal to overall processing times on machines 
less processing times on the selected two workpieces and with zero minimum 
succession times between them. Thus m•(m-1) tests are performed to establish a lower 
bound to estimate theoretical minimum of overall completion time. 
 



 

CONCLUSION 

 
Due to standard technologies and to specialization of resources typical in Construction 
Industry problem of harmonizing preferences of Clients and those of Contractors can 
be demonstrated by the challenge of Flow-Shop Problems. Expectation of completing 
workpieces (buildings) as individual deliveries in the shortest times (Clients’ interest) 
is not necessarily coinciding endeavour of firms contributing in completing the series 
of workpieces – also in the shortest overall execution time (Contractors’ interest).  
 
The question we faced was if computerized tools of sequencing could help us at 
resolving some contradictions of interest of clients and that of contractors in a way of 
finding proper arrangements/sequences of contracts, according to which each building 
could be delivered in an acceptably short period and performance of contractors could 
be managed in an effective industrialized way. … 
 
For testing and demonstrating effect of sequence on minimum overall execution time 
of a Master Schedule a small computer appilcation had been developed at Department 
of Construction Technology and Management of Budapest University of Technology 
and Economics. Together with modelling and testing potential effects of the sequences 
more principal ways of building/finding optimal solutions had been tested. 
 
Experiences show that none of the advanced techniques and/or approaches proved to 
be either deliberately or more outstandingly better or effective than the most primitive 
way of Random Trials. The same time it was found that elaborating a proper estimate 
on likely optimum is a more promising challenge. Having it, we can judge optimality 
of any sequence found or produced, and we can estimate likely return of our efforts to 
find an even better solution if the one produced did not seem to be optimal.  
 
In this paper we introduced a way of estimating optimum of F|overlap, no-wait|Cmax 
problem. 
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