SELECTING MACHINES OF SYNCHRONIZED PROCESSES

Description	Quantity	Unit		Remarks
Volume of earth to move (V) Average haulage distance (L) Scheduled duration (T)	12 000 1 500 150	m	•	rk balancing plan(s) vailable haulage roads (permanent and/or temporary) pted time plans (here: 3 weeks, 5 days a week, 10 hours a day)
"MATERIAL FLOW" (F)	80	m³/h	F = V / T	("master intensity")

EXCAVATION]	
Number of main units ("capacity") (C)	1 pcs	here: hydraulic slewing excavator(s) Based on site surveys, on-site managerial considerations and
Expected effective output of a main unit (N _{eff})	80 m ³ /h	available/estimated capacities ($N_{eff} = F/C$)
Working conditions' coefficients:		Actual values can be estimated on the basis of past experiences, engineering analyses and/or on-site tests
- extent of site (m ₁)	0,80 -	Based on site suveys, in range of 0,60÷1,00 (here: "average/ordinary conditions")
- soil conditions (m ₂)	0,95 -	Based on soil mechanics reports, in range of 0,65÷1,10 (here: "average/medium soil")
- unloading/discharging (m ₃)	0,90 -	Based on experiences and/or tests, in range of 0,55÷1,00 (here: "discharging to a truck")
- truck capacity (m ₄)	1,00 -	Based on box/backet ratio, in range of 0,8÷1,00 (here: "over 6 buckets per box")
- swivel/slewing (m ₅)	1,00 -	Depends on the slewing angle, -5% ÷ -7% per each 30° over 90° (here: "truck at the side of the excavator")
- general condition of the machine (m ₆)	0,95 -	Based on amortization and maintenance, in range of 0,80÷1,00 (itt: "some years old in good condition")
- skill of the operator (m ₇)	0,95 -	Based on experiences and age of the operator, in range of 0,70÷1,00 (here: "experienced young operator")
- overall working conditions (m)	0,62 -	$m = m_1 * m_2 * m_3 * m_4 * m_5 * m_6 * m_7$
- time efficiency factor (g)	0,90 -	Based on on-site technical estimates, in range of 0,80÷0,95 (here: "less than an hour idle time per shift")
Expected operative output (N _{op})	130 m³/h	$N_{op} = N_{eff} / m$
Expected technical output (N _{tech})	144 m³/h	$N_{\text{tech}} = N_{\text{op}} / g$ (Experiences: $N_{\text{tech}} = 1,25 \div 2,50 * N_{\text{eff}}$, that is, $N_{\text{eff}} = 0,40 \div 0,80 * N_{\text{tech}}$)

A++		hansa hankankan kunkak
Attachment		here: backacter bucket
Operation time analysis		Based on technological analyses and/or on-site tests
- bucket down (t ₁)	<mark>3</mark> "	Depends on vertical position of the machine (depth of the trench/ditch, height of discharging)
- filling/extracting (t ₂)	3 "	Depends on soil conditions and on the design of the actual attachment (bucket)
- bucket up (t ₃)	3 "	Depends on vertical position of the machine (depth of the trench/ditch, height of discharging)
- slewing (t ₄)	<mark>4</mark> "	Depends on horizontal position of truck/discharging (slewing angle)
- discharging (t ₅)	3 "	Depends on soil conditions
- slewing back (t ₆)	<mark>4</mark> "	Depends on horizontal position of truck/discharging (slewing angle)
Cycle time (t)	20 "	$t = t_1 + t_2 + t_3 + t_4 + t_5 + t_6$
Cycles per hour (c)	180 cycles/h	$c = 3600 / t$ (Experinces: $c = 160 \div 220 \text{ cycles/h}$)
Minimum size of the (backacter) bucket (V)	0,80 m ³	$V = N_{tech} / c$ (Usually in range of 0,50÷2,00 m ³)
Selected machine(s):		

TRANSPORT (HAULAGE)	i	
	•	
Bulking coefficient (b _c)	1,25 -	Function of soil characteristics (here: average/medium "sandy gravel")
Box size of the dumper truck (V _{tech})	15 m ³	here: typed dumper truck

here: typed dumper truck $V_{eff} = V_{tech} / b_c \qquad (converted to natural/dense soil)$

Effective box size o the dumper truck (V_{eff}) 12 m^3

Based on technological analyses and/or on-site tests

- loading (t_i) 9 '
- average travelling speed when loaded (v_f) 10 Km/h

 $t_{l} = (V_{eff} / F) * 60$

 $t_f = ((L/1000)/v_f)*60$

- travelling time when loaded (t_f)

Based on experiences, on-site tests and/or on-site regulations (\dots on given distance (range), dust road, \dots)

travelling time when loaded (t_f)
 discharging, to prism (including positioning) (t_d)

TRANSPORT (HALII ACE)

2 ' 15 Km/h

9 '

4 '

Based on technical characteristics of the truck and/or on-site tests $% \left(1\right) =\left(1\right) \left(1\right$

average travelling speed when empty (v_b)
 travelling time when empty (t_b)

Based on experiences, on-site tests and/or on-site regulations (\dots on given distance (range), dust road, \dots)

- estimated idle time (queueing) (t_q)

 $t_b = ((L/1000)/v_b)*60$

Cycle time (t)

Based on experiences, mathematical models ("Theorems of queueing") and/or on-site tests $% \left(1\right) =\left(1\right) \left(1\right$

 $30 \quad t = t_l + t_f + t_d + t_b + t_q$

Necessary capacity (C)
Assigned fleet of trucks:

Operation time analysis

3,3 pcs

 $C = t / t_I$ (Reasonably to be rounded upward!)

Department of Construction Technology and Management

Managing Construction Projects 2020-

SPREADING

Technical parameters of the main unit:		here: Bulldozer
- width of the blade (w)	1,50 m	Based on technical parameters of the machine
- working speed, forward only (v _{tech})	1,50 Km/h	Based on technical parameters of the machine
- average (effective) working speed (v _{eff})	1,00 Km/h	v _{eff} = v _{tech} * 0,67 Considering ways back (backward and manoeuvring idle times)
- effective layer thickness when spreading (h _{eff})	<mark>0,15</mark> m	Based on technical parameters of the machine and considering soil characteristics
Estimated technical output (N _{tech})	225 m³/h	$N_t = w * v_{ef} * 1000 * h_{eff}$
Working conditions' coefficients:		Actual values can be estimated on the basis of past experiences, engineering analyses and/or on-site tests
- soil conditions (m ₂)	0,95 -	Based on soil mechanics reports, in range of 0,70÷1,00 (here: "average/medium soil")
- general condition of the machine (m ₆)	0,90 -	Based on amortization and maintenance, in range of 0,80÷1,00 (itt: "old machine in good condition")
- skill of the operator (m ₇)	0,85 -	Based on experiences and age of the operator, in range of 0,70÷1,00 (here: "motivated/keen novice")
- overall working conditions (m)	0,73 -	$m = m_2 * m_6 * m_7$
- time efficiency factor (g)	0,90 -	Based on on-site technical estimates, in range of 0,80÷0,95 (here: "less than an hour idle time per shift")
Operative output (N _{op})	164 m³/h	$N_{op} = N_{tech} * m$
Effective output (N _{eff})	147 m³/h	$N_{eff} = N_{op} * g$ (If not too much bigger than "F" then OK!)
Selected machine:		

COMPACTING

Technical parameters of the main unit: - width of the roller (w) - working speed when compacting (v _{tech}) - effective depth of compaction (h _{eff}) - specified passes (cycles) per layer (c)	1,10 m 1,00 Km/h 0,25 m 3 - 92 m ³ /h	here: Ride-on typed vibro roller Based on technical parameters of the machine Based on technical parameters of the machine, back and forth the same (v _{eff} = v _{tech}) Based on technical parameters of the machine and considering soil characteristics Based on soil mechanics report and/or on-site tests
Estimated technical output (N _{tech}) Working conditions' coefficients: - general condition of the machine (m ₆) - overall working conditions (m) - time efficiency factor (g)	1,00 - 1,00 - 0,90 -	N_t = (w * v _{eff} * 1000 * h _{eff}) / c Actual values can be estimated on the basis of past experiences, engineering analyses and/or on-site tests Based on amortization and maintenance, in range of 0,80÷1,00 (itt: "new machine in perfect condition") m = m ₆ Based on on-site technical estimates, in range of 0,80÷0,95 (here: "less than an hour idle time per shift")
Operative output (N_{op}) Effective output (N_{eff}) Selected machine:	92 m³/h 83 m³/h	$N_{op} = N_{tech} * m$ $N_{eff} = N_{op} * g$ (If not too much bigger than "F" then OK!)

Small figures of machines downloaded from: https://hu.depositphotos.com/187613414/stock-illustration-set-various-transportation-construction-machinery.html 16-04-2020