Network Techniques - II.

CPM^{time} - CPM^{time+} : Overlapping, open network and non-broken activity keep being problematic (Schedules for Production Management ?!)

MPM^{time} : (<u>METRA P</u>otentials' <u>M</u>ethod)

Activity-on-node typed, deterministic project model with discrete variables and with abilities of handling manyfold and multiple relations

GTM: (<u>**G**</u>eneral <u>**T**</u>ime <u>**M**</u>odel)

Event^{*}-on-node typed deterministic project model with homogeneous relations

* Deadline and/or milestone

METRA Potentials' Method (MPM^{time})

1960 : B. Roy, France, Appl: Nuclear Power Station (originally: start potentials only)

Node :

Activity (with no break in performance) (Event and milestone have duration of 0)

Edge :

Technical-, technological-, or resource management-born quantified relation

Parameter (weight) :

Lag-time, duration and time potential (deterministic variable)

Aim : Schedules for production management, modelling technologies, monitoring progression, change management ... Handling (time consequences of) overlapping (relative in time), restrictions for resource allocation, technological and spatial limitations, etc. ...

"Relation" (max)

BUTE DCTM / Engineering Programs in English / 2000-

MPM - Basic Relations

SFp $q = p - D_p$ $q = p - D_p - D_s$ $q = p - D_s$ SSp $q = p + D_s - D_p$ $q = p - D_p$ $q = p + D_s$

Single Relations

FSp "finish-start minimum p"	Successor (related) activity can be started <u>at least</u> " p " tu later than predecessor (base) activity is finished	Typically in case of strictly limited resources (usually with parameter of ,,0", to assign consecutive processes)
-FSp "finish-start maximum p"	Successor (related) activity should be started <u>at most</u> "p" tu later than predecessor (base) activity is finished	Typically accompanying an FSp relation, in case of sensitive conditions or strict expectations on effective resource usage
SSp "start-start minimum p"	Successor (related) activity can be started <u>at least</u> "p" tu later than predecessor (base) activity is started	Typically in case of well synchronized parallel processes, in a large-scale schedule of a project
-SSp ,,start-start maximum p"	Successor (related) activity should be started <u>at most</u> "p" tu later than predecessor (base) activity is started	Not typical relation. Solely or together with an SSp relation it can be a useful tool for direct allocation (time or resource)
FFp "finish-finish minimum p"	Successor (related) activity should be finished <u>at least</u> "p" tu later than predecessor (base) activity is finished	Mostly a count-down typed relation for ,,administrative'', e.g. handover- or supervisory activities
-FFp "finish-finish maximum p"	Successor (related) activity should be finished <u>at most</u> "p" tu later than predecessor (base) activity is finished	Not typical relation. Solely or together with an FFp relation it can be a useful tool for direct allocation (time or resource)
SFp "start-finish minimum p"	Successor (related) activity should be finished <u>at least</u> "p" tu later than predecessor (base) activity is started	Theoretic relation, typically with negative parameter and for to replace a -FSp relation (see: scheduling)
-SFp "start-finish maximum p"	Successor (related) activity should be finished <u>at most</u> "p" tu later than predecessor (base) activity is started	Theoretic relation, being mentioned to complete the list only. It can be used in case of complicated allocations

Most Frequently Used Combined Relations

SSp FFp } CRp ,,(min) critical succession"	A lead-time of <u>at least</u> ,,p" tu should be provided between the predecessor (base) and successor (related) activity at any rate of completion	Typical relation of technological or resource management-born restrictions (hardening, drying, consolidation, etc.) independent of durations of activities.
-SSp -FFp }-CRp ,,(max) critical succession"	A lead-time of <u>at most</u> ,,p" tu can be accepted between the predecessor (base) and successor (related) activity at any rate of completion	Carefully applied it can be a useful tool in case of sensitive conditions. Be careful with it ! Applications may result in a misguiding model !
FSp -FSp } ,,strict/forced succession"	Successor (related) activity must be started <u>exactly</u> "p" tu after predecessor (base) activity is finished	Typically used for <u>direct</u> allocation of succeeding activities.
FS0 -FS0 } ,,immediate succession"	Successor (related) activity must start <u>immediately</u> after predecessor (base) activity is finished	Typically used for expensive or most significant resources to provide their continuous usage, application or employment
FF _{f(Ds)} } SS _{f(Dp)} } ,,(min) critical approach (in progression)"	 Timing of base and of related activities should provide <u>at least</u> f(Dp) tu lead-time between their starts and <u>at least</u> f(Ds) tu lead-time between their finishes. (<i>Parameters set as function of activity durations</i>) 	Typical tool for to <u>provide room</u> (manipulation/operation area) for succeeding activities. Parameters are set <u>in relation of</u> intensity of performances.
-FF _{f(Ds)} } -SS _{f(Dp)} } ,,(max) critical approach (in progression)''	Schedule of base and related activities is acceptable if it results in <u>at most</u> f(Dp) tu lead-time between their starts and <u>at most</u> f(Ds) tu lead-time between their finishes. (<i>Parameters set as function of activity</i> <i>durations</i>)	Carefully applied it can be a useful tool for <u>restricting area</u> of manipulation/operation on the construction site. Be careful ! Applications may result in a misguiding model !

BUTE DCTM / Engineering Programs in English / 2000-

Providing Manipulation Area Progression [m] $\mathbf{FF} \frac{l \times \mathbf{D}_{s}}{L}$ + * D_p l L 0 D_s Time l $SS\frac{l \times D_p}{L}$ Progr.[m] $\mathbf{FF} - \frac{l \times \mathbf{D}_s}{L}$ D_p L Р 0 D_s Time l

 $SS \frac{l \times D_p}{L}$

Sensitive Conditions

Restricting Manipulation Area

Restrictions on Duration

Virtual Deceleration / Paradox /

BUTE DCTM / Engineering Programs in English / 2000-

Behavior/Type of (Critical) Activities

General Time Model (GTM)

1997 : Hungary, Z. A. Vattai, Multi-project management (MÁV)

Node :

Event (a specific moment in time) (start, finish, milestone, deadline)

Edge :

Relation/comparision/restriction <u>assignment</u> (process, activity, idle-time, lag-time, etc. as technical interpretation)

Parameter (weight) :

Restriction parameter, <u>lower bound</u> value, time-potential (deterministic variable)

Aim :

Releasing restrictions of traditional scheduling techniques (PERT,CPM,MPM), to develop flexible technological models and stabil logical structures for projects of typified (logical/technological) elements

BUTE DCTM / Engineering Programs in English / 2000-

MPM^{time} ® GTM Problem

FOUR "MAGIC QUESTIONS" from network techniques

- 1., Duration of an activity having <u>no float</u> in an <u>activity-on-arrow</u> typed project model get <u>increased</u> by δ . What will be its effect on the overall execution time of the project ?
- 2., Duration of an activity having <u>no float</u> in an <u>activity-on-arrow</u> typed project model get <u>decreased</u> by δ . What will be its effect on the overall execution time of the project ?
- 3., Duration of an activity having <u>no float</u> in an <u>activity-on-node</u> typed project model get <u>increased</u> by δ . What will be its effect on the overall execution time of the project ?
- **4**., Can emerge any situation when an activity having no float <u>simultaneously</u> behaves as *"positive-", "negative", "start-", and "end-critical"*?