CONTRACTING

$\mathbf{T} = f(\$, \$, \mathbf{I}, \mathbf{mp}, ...)$

- § : law & regulation
- *\$* : financing
- **I**: location
- **m** : technology
- **p**: time period

GRAPH (Basic Terms of Graph Techniques)

As a "model" :

Strictly identified elements and well defined ,,bilateral" (pairly) relations among them ...

Elements :

- particles
- phases / states
- processes

Relations :

- links, joints
- cause-result interactions
- precedences, sequences

•

Mathematically :

Structured set of nodes and edges. Edge : related **pair of nodes** ...

Set of nodes (N = "node")N = { a, b, c, d, e, f }

Set of edges (E = "edge")

 $E = [\{a,c\}, \{a,e\}, \{b,c\}, \{b,d\}, \\ \{b,e\}, \{c,e\}, \{c,f\}, \{d,f\}]$

```
Graph (G = "graph" @ graphics)
G = [N, E]
```

Directed Edge (*A* = "arc", "arrow")

Relation between paired nodes $\{i, j\}$ interpreted in one direction (e.g. from "i" to "j") only. (Order of nodes also indicates direction. E.g.: (i, j), ... (a, e), ...)

 $N = \{ a, b, c, d, e, f \}$

 $A = \{ (a,c), (a,e), (b,c), (b,d), \\ (c,b), (c,f), (e,b), (e,c), (f,d) \}$

$$G = [N, A]$$

Directed Graph

(frequently referred as "DiGraph")

"A graph with all the edges directed "

(Implicitly: Between two nodes at most one directed edge should be allowed ? ...)

Remark :

Any "non-directed" edge can be handled as "directed", since any non-directed edge can be substituted with an opposed pair of directed edges between the same two related nodes

 $\{i, j\} = \{(i, j), (j, i)\}$

(... Anyway, why not to allow existence of more directed edges between any related pair of nodes ? ...)

Weighted Graph

Quantitative characteristics so called ,,weights" are interpreted/assigned by nodes and edges.

Basic Terms of Directed Graphs

Source :

A nod being origin of at least one directed edge, but not terminal point of any directed edges.

Sink :

A nod being terminal point of at least one directed edge, but not origin of any directed edges.

Path : (P)

Continuous repeatless directed chain (string) of directed edges.

Identifying them by the sequence of linked nodes. e.g.: *P*[*i*,*l*] = { *i*, *j*, *k*, *l* }

Loop :

A path with origin and terminal point the same. ,,Self-closing path". e.g.: $P[i,i] = \{i, j, k, (i)\}$

Graph - Topologies

(In relation of nodes and edges, etc. ...)

"comlete"

"bipartite"

"tree"

"connected" "non-connected"

Structure (''adjacency'') matrix

The "Network"

Network (*as terminus technicus*) :

Connected weighted directed graph with a single source and a single sink but with no loops and no negative weights.

Network (*as a popular reference*) :

A graph ... with no any specification or generalization.

Network "Problems" (the most popular questions)

- Path finding *

- Integrity (connectivity) analysis
- Loop discovery
- Dominance analysis
- Path-variants
- Longest path / Shortest path *
- Gravity-point / Center-point
- Maximal flow / Minimal cut *
- Potentials' problems

* so called "directed problems"

Scheduling by Networks

Network Problem Analogies:

- The longest path
- The minimum potentials'

(All the elements are relevant, but we are looking for de dominant ones and are trying to predict generated effects of any changes.)

Scheduling Techniques using Networks (*complementary algorithms, interpretations*)

- PERT^{time}
- CPM^{time}
- CPM^{cost}
- CPM^{time+}
- MPM^{time}/PDM^{time}
- MPM^{cost}
- GTM (General Time Model)