Erecting the building in accordance with the plans

Supervision of the construction (quality survey)

Handover of the building
SITE LAYOUT

DEF.: Set out of the building = Fixing the characteristic points of the building on the site.

1. set out the boundaries of the site – placing markers called „monuments“
2. mark out the right place of the building with stakes - the stakes should stay outside of the construction pit
3. assemble (with nail or screw) batter boards on the stakes, setting them to a proper level (with definitive relation to the level of the elevations)
4. marking the sides using a tape (holding by the batter boards)
5. plumbing the corners to the excavation floor (at the intersections of the lines)
6. sign the end of the work pit with further posts
7. start of the excavation of the work pit

the placement of the studs are allocated by geodesic methods

VIDOVSZKY – BUTE – Department of Construction Technology and Management
FURTHER LAYOUTS

1. Layout of the foundation

2. Alignment on the levels of the building – 1m line (reference level)

Reference level: On each level of the building – at 1m height from the final floor level.

CONSTRUCTION WORKS

- concrete works
- carpentry
- masonry/bricklaying
- joinery/(cabinetmaking)
- wall and floor tiling
- roof tiling
- sheet metal work
- stonemasonry
- ironwork

- general drawings M=1:100, M=1:50
- layout
- elevations
- sections

- special drawings M=1:100, M=1:50

- detail drawings M=1:20, M=1:10

- detail drawings M=1:5, M=1:2

- 3D drawings

- 3D detail drawings
ESSENTIAL CONTENTS OF THE CONSTRUCTION DRAWINGS

providing information to the skilled workers

Where?
- How far?
- What distance?

What?
- How long?
- What kind of material?
- What kind of quality?
- How many? How much?

How?
- Which technology?
- Which trade shall do it?
- How many workers are needed?

data + criteria

drawings

specification

input

criteria

• building program
• quantity
• material type
• dimensions
• distances
• shapes
• colors
• etc.

Building code – The minimum requirements

vidovszky – BUTE – Department of Construction Technology and Management
IMPACTS ON CONSTRUCTION DETAILS

- function of the adjoining spaces
- component parts technology
- indoor environmental requirement
- technology, time, trade traditions
- detail (joint)
- shape, form
- weather, climate
- materials, energy
- values, ethics, customs

WHO USES THE CONSTRUCTION DRAWINGS AND FOR WHAT PROPOSES?

- construction manager
 - selecting the technology
 - estimating costs
 - planning time
- general foreman
 - directing the construction activities
- skilled workers
 - executing construction works
- quality surveyor
 - controlling the construction process
 - controlling if the drawings are according to regulations / standards
THE CONTRADICTION OF INTERESTS BETWEEN CONTRACTOR AND DESIGNER

What does quality mean?

contractor

architect

time and cost has priority

time and cost are indifferent

QUALITY

material

aesthetical

Different priorities!

THE CONSTRUCTION DOCUMENTATION

written part (specification)

construction drawings

equal information is essential!!!

synchronizing information

*with the co-operative designers

*on the different scale drawings

*of the written papers and the drawings
BUILDING TRADES – SKILLED WORKERS

- different material
- technology
- skilled worker
- trades
- specific problematic

precision, time, cost, rough material, prefabrication, technological sequence etc.

CONCRETE / REINFORCED CONCRETE WORKS

- formwork drawings: M=1:100, M=1:50
- reinforcement drawings: M=1:100; M=1:50
- detail drawings: M=1:10; M=1:10
- 3D drawings
CARPENTER

general drawings
M=1:100, M=1:50
detail drawings
M=1:20; M=1:10
detail drawings
M=1:5; M=1:2
3D drawings;
3D detail drawings

real dimensions – drawings on site

MASONRY / BRICKLAYER WORK

detail drawings/ brick layout for facades
M=1:20; M=1:10

accuracy of the wall is 5mm ↔ precision of the bricks is 2-8mm
ROOF TILER

detail drawings / layout / elevation M=1:20; M=1:10

real dimension problem!

SHEETMETAL WORKER / METAL ROOFER

detail drawings M=1:20; M=1:10

detail drawings M=1:5; M=1:2

3D detail drawings

accuracy is 1mm
BUILDING ACCORDING TO THE PLANS

FLOOR AND WALL TILER

detail drawings/ tile layout M=1:20; M=1:10

starting point!
framing courses!
string course!
inclination of the floor

measurement of the joints!
ID for the different kind of elements
quantity calculation (+10%)

IRON WORK / LOCKSMITH'S WORK

detail drawings (consignation) M=1:20; M=1:10; M=1:5; M=1:2

accuracy is 1mm
IDs for the elements
STONEMASON

detail drawings (consignation) M=1:20; M=1:10; M=1:5; M=1:2

JOINER / CABINETMAKER

detail drawings (consignation) M=1:20; M=1:10; M=1:5; M=1:2

IDs for the elements
INSULATION WORKER
(thermal and moisture protection)

- general drawings \(M=1:100, M=1:50 \)
- detail drawings \(M=1:10; M=1:5; M=1:2 \)
- 3D drawings

ADDITIONAL DRAWINGS
Appendixes for construction logbook

- *to make drawings for all the changes*
- *for the better understanding of the contractor*
- *drawings of the fulfilled state*
SUSTAINABILITY ASPECTS

How to reduce wasting and loss?

*apply local materials and well known technologies
*apply standard sizes if applicable
*design easily mountable and dismountable joints
*design easily maintainable surfaces and structures
*ensure the easy change of parts and surfaces which most frequently wear out
*control documentation before issuing

QUALITY SURVEYOR

(supervisor)

The education, the competences and the activity of the quality surveyor is legally prescribed.

Education:

- BSc or higher degree (+ some year practice)
- education as quality surveyor and/or exam

Competences: trained in building construction and building law
SUPERVISING PROCESS
duties of the quality surveyor

1. ensure professionalism
 * control of the plans in accordance with the standards and the legal prescriptions
 * proposing alteration of the plan for the client, if it is technically or financially reasonable
 * control of the assignment of the building
 * ensure the prosecution of the prescribed tests (e.g. soil mechanics)
 * controlling quality prescribed by the standards

SUPERVISING PROCESS
duties of the quality surveyor

2. following and controlling the construction work
 * continuous control of the construction logbook
 * note all failures (deficiencies and faults) in the construction logbook
 * controlling hidden structures and volume of the completed work before getting covered (e.g. reinforcement)
 * control of the conformance of the used materials (CE, etc.)
 * controlling volume of the completed work
 * informs the client if the completed work is according to the contract (volume, standards, prescriptions, etc.) – (Is it suggested for the client to pay all the bills or not?)
 * take part in the hand over process
HAND OVER

It is the legally prescribed final period of the construction process.

The hand over begins with the written statement of the contractor on the followings:

• the construction works are finished in accordance with the contract
• the works are in accordance with the technical standards and legal prescriptions
• the building is ready for proper use -> the process for the permission of use can be started

TYPES OF HAND OVER

Segmental hand over if more building were constructed, or there are more independent construction phases of the building(s). In this case the independent functional units or construction phases have separated hand over procedures.

Partial hand over if a part of the building have to be used before the whole construction is finished.

Complete hand over means the end of all construction activities on the site.
PARTICIPANTS OF THE HAND OVER

- representatives of the contractor and sub-contractors
- the competent technical executive (site engineer)
- client
- quality surveyor
- architect and co-designers
- technical representative of the local authority
- representatives of different authorities and public utilities

REQUIRED DOCUMENTS

- statement of completeness
- contract of the construction
- attendance register
- hand over documentation (with the drawings of the fulfilled state)
- construction logbook with appendixes
- statement of the competent technical executive (site engineer)
- statement of the quality surveyor
- conformance documentation of the used materials
- technical and guarantee papers of the built-in equipments
- statements of guarantee
- measurement reports
HAND OVER PROCEDURE

1. Statement of completeness (by the contractor)
2. Appoint the date for the beginning of the hand over process (by the client)
3. Start up of the hand over process – it can be finished if:
 • the building is completed – no failures sets back from the proper use
 • the test run of all the installation systems are done - report has been made
 • if there are failures – they have been recorded
 • all the required documents have been prepared
4. Finish of the hand over process – The client takes over the building
5. If there were failures -> Correcting failures
6. The contractor leave the site – Start up of the process for the permission of use
7. The client settle the remaining bills

REFERENCES

158/1997. (IX. 26.) Korm. rendelet az építési műszaki ellenőri tevékenységről (Governmental edict)
Sátori Sándor: A műszaki ellenőr, Budapest Műszaki Egyetem (Presentation for lecture)
www.ekt.bme.hu/BeruTerv/AMuszakiEllenor.pps 2010-10-16
191/2009. (IX. 15.) Korm. Rendelet az építőipari kivitelezési tevékenységről Governmental edict)