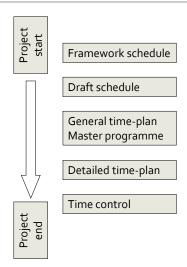
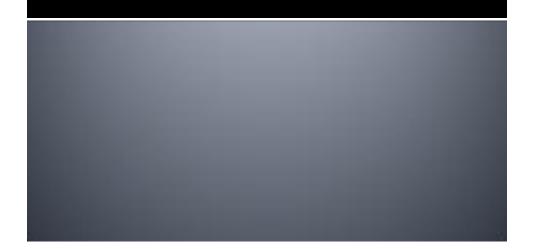


What is a schedule?

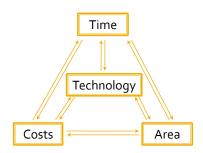

- Why?
 - To forecast the events/activities in the building project
 - To lay down deadlines
 - To forecast the requirements of money and other resources
- Affecting factors:
 - Law, regulation;
 - Financing;
 - Technology;
 - Location...


What is a schedule?

- Purposes and aims
 - To give the duration of a project/construction
 - To expose likely difficulties of the future, and help to solve them
 - To minimize the unproductive time of men and machines
 - To use as a control tool
 - It has to be detailed (and accurate) enough for the actual use project manager, construction manager, general foreman, skilled workers, etc.

What is a schedule?

- Types of schedules (during a building project)
 - The later it is made, the more accurate and detailed it can be



"Time planning"

Information needed

- What to do?
 - Operations, activities;
 - Events;
 - Quality and quantity.
- How to do it?
 - Technology;
 - Type of labour (trades);
 - Type of machine, equipment;
 - Subcontractors.
- Costs?

What to do?

- Determine what is to be done: OUTCOMES
- Work Breakdown Structure (WBS)
 - It is a technique for breaking down a total job into its component elements;
 - It is a tool used to define and group a project's discrete work elements in a way that helps organize and define the total work scope of the project;
 - It is NOT a project plan, a schedule, or a chronological listing.

"Time planning"

- Work Breakdown Structure (WBS) example
 - ...
 - o7 Concrete works
 - 07-01 Blinding
 - o7-o2 Concreting foundation slab
 - o7-o2 Concreting walls
 - …
 - I1 Wood works
 - 11-04 Formworking foundation slab
 - 11-04-02 Preparing formwork sheets
 - 11-04-05 Assembling and supporting
 - 11-04-11 Removing formwork
 - 11-04-12 Repairing formwork sheets

- 11-06 Formworking walls
 - 11-06-02 Preparing formwork sheets
 - 11-06-04 Assembling and supporting internal formwork
- 11-06-06 Assembling external formwork
- 11-06-09 Scaffolding and supporting external formwork
 - 11-06-11 Removing formwork
 - 11-06-12 Repairing formwork sheets

• ...

What to do?

- WBS →
- List of operations (activities)
 - Production processes —
 - Building processes —
 - Technology processes —
 - Activities
- Quantities for each activity

"Time planning"

Assigning resources

- Material (construction material, auxiliary structures, ...)
- Human (management, skilled workers labour)
- Equipment (machines, heavy equipment, power tools, ...)
- Area
- Money

Standards: tools for estimating time required for the processes

- Performance standard [time/unit] (h/m³, h/m²...)
- Standard output [unit/time] (m³/h, pcs/h)
- The standards are determined by statistical/ technical analysis, by measuring and comparing former performance.
- The standards have to be adjusted to the actual circumstances (location, resources, ...)

"Time planning"

Estimating time: the duration of the processes

Work [time] = Volume [unit] Standard output [unit/time]

Work: time of process for one unit of resource

Work [time] = Volume [unit] x Performance standard [time/unit]

```
Duration [time] = Work [time]
Allocated resource [unit]
```

Duration: time of process for the allocated units of resource

Result information:

- Operation (task), Quantity
- Labour / equipment, quantity
- Duration

From these results

- the time-plan,
- the labour schedule,
- the equipment (plant) schedule,
- the material schedule,
- and the payment schedule can be made.
- Connections between operations:
- Consecutive

Parallel

- Activities
- Overlapping

Schedule representations

Timetable (tabular or alpha-numerical schedule)

It is accurate

 Hard to see the current status at the first sight Example: a retaining wall

ID	Activity	Time	Start	Finish	Labour	Machine	Cost	Remark
1	Demolish top soil	2 d	02-04-10	03-04-10		ı bulld.	€	
2	Excavating trench	2 d	04-04-10	05-04-10	3 labr.	ı backh.	€	15% labr.
3	Blinding	3 d	06-04-10	08-04-10	5 labr.		€	
4	Formwork (foundation slab)	3 d	08-04-10	10-04-10	2 carp.		€	
5	Reinforcement (foundation slab)	5 d	08-04-10	12-04-10	4 steel.		€	35% prefabr.

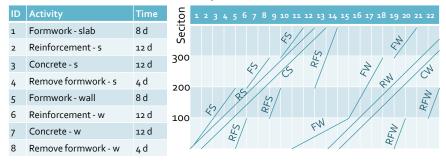
Schedule representations

Bar chart – Gantt chart

- Most widely used technique
- It consists of a scale units of time (e. g. days, weeks,...) and a list of project elements (+other information)

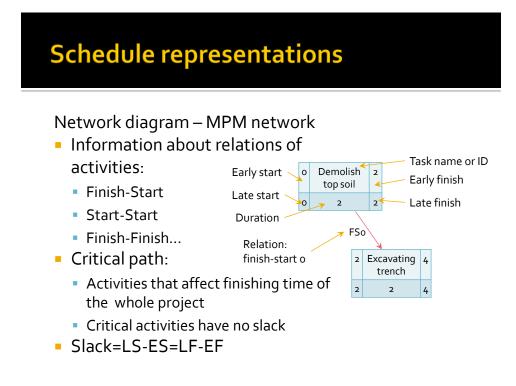
ID	Activity	Time	Labour	1	2	3	4	5	6	7	8	9	10	11	12
1	Demolish top soil	2 d													
2	Excavating trench	2 d	3 labr.												
3	Blinding	3 d	5 labr.												
4	Formwork (foundation slab)	3 d	2 carp.												
5	Reinforcement (foundation slab)	5 d	4 steel.												

Bar chart – Gantt chart

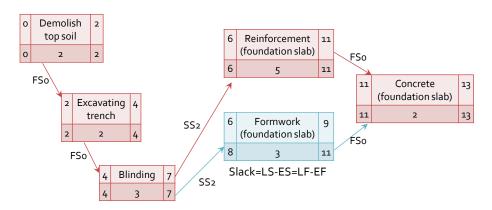

Resource management: workers, equipment

ID	Activity	Time	Labour	1	2	3	4	5	6	7	8	9	10	11	12
1	Demolish top soil	2 d	ı labr.												
2	Excavating trench	2 d	3 labr.												
3	Blinding	3 d	5 labr.												
4	Formwork (foundation slab)	3 d	2 carp.												
5	Reinforcement (foundation slab)	5 d	4 steel.												
	Bulldozer	2 d													
	Backhoe	2 d													
	Labour			1	1	3	3	5	5	11	6	6	4	4	

Schedule representations


Linear schedule – Cyclogram

- Used usually by construction of linear objects or repeating tasks
- It shows spatial progress
- It consists of two scales one for time (e. g. days, weeks,...) and one for space (+tabular info)


Network diagram – e.g. CPM, PERT, MPM networks

- Two types of network diagrams:
 - activity on arrow (AOA) CPM
 - activity on node (AON) these are generally easier to create and interpret. (MPM)
- It contains information about relations of activities
- Easy to see the critical path: activities that affect finishing time of the whole project, and activities that have slack.

Network diagram

Activity on node (AON) network - MPM

